©IPK 20/04/17 10:20

[image: image1.wmf]GCSE

ELECTRONICS

SUPPORT

BOOKLET

Ian Kemp

August 2009

CONTROL

SYSTEMS

PROGRAMMABLE

INTRODUCTION

This support booklet is written for candidates following the A2 Module 4, Programmable Control Systems, ELEC4, from the AQA Electronics specification. It is not intended to be a rigorous academic text, nor a teaching scheme but rather that it should provide candidates and teachers with a working knowledge of the electronics covered by this module. The booklet should be used in conjunction with the specification. It is assumed that candidates will have a knowledge and understanding of electronics as defined in the National Curriculum for Science up to, and including level 7 and that they will have already studied and understood the material of the AS Electronics Specification.

In the Module test, candidates will be expected to draw appropriate circuit diagrams, perform calculations using the equations given on the Data sheet in the specification, write short microcontroller programs in AQA assembler and describe/explain electronic systems and their performance.

If you find this booklet of help, please consider making a donation to

SightSavers International www.sightsavers.org
OVERVIEW OF THE MODULE SPECIFICATION

Programmable control systems form an ever growing part of modern life and are to be found in almost all domestic and commercial appliances. Modern industrial manufacturing techniques rely very heavily on the use of programmable control systems in the automated and robot operated production lines. It is therefore essential that all students of electronics gain an introduction to Programmable Control System and also gain first hand experience of using software operating on microcontrollers to control electronic and mechanical systems.

While there is a large amount of demonstration equipment available for the teaching and learning of programmable control systems, much of it is expensive and, by its very nature, becomes remote and ‘black box’ like. This module was constructed so that it could be taught with the bare minimum of expensive equipment and yet would provide students with essential first hand experience of control electronics.

This module includes the use of Assembly Language to program microcontrollers. While are many different types of microcontrollers available, it was decided to specify a generic set of Assembler instructions rather than use any specific set from a real microcontroller for examination questions. However, centres are free to use which ever type of microcontrollers they wish for practical work and coursework with their students.

Much of the work for this module can be linked together through robotic systems and this will ensure that the relevance of the different input sensors, output devices and programming is seen as a whole. The robotic systems could be based on commercial kits or home made from basic components. Competitions between robotic systems always enthuse and interest students, especially when it is their own work that is being used in the competitions. The relevance of the different subsystems can then be expanded to cover other applications and systems.

This module also covers a significant amount of synoptic work as required by QCA. This is incorporated within the circuits used with the control systems and as such it is essential that significant time is devoted to revising the concepts and basic circuits covered in the AS Introductory and Further Electronics modules.

CONTENTS
	
	
	Page

	
	Introduction
	2

	
	Overview of the Module Specification
	3

	
	Contents
	4

	
	Control Systems
	6

	
	Microprocessor Subsystems
	11

	
	
Merits of Hard Wired and Software Controlled Systems
	11

	
	
Architecture of Generalised Microprocessor System
	13

	
	
Systems on a Chip (SoC) PICs and AVRs
	18

	
	
Architecture of PIC and AVR Devices
	18

	
	
Social and Economic Implications of SoCs
	19

	
	Programming
	21

	
	
Flow Charts
	21

	
	
Converting Flowcharts into Programs
	24

	
	
The AQA Microcontroller and Assembly Language
	25

	
	
Assembly Language Instructions
	27

	
	
Using Assembly Language Instructions
	29

	
	
Hardware Interrupts and Polling
	32

	
	
Interpreting Programs Written in Assembler
	32

	
	Input Subsystems
	33

	
	
8-bit Digital Ramp ADC
	33

	
	
Flash ADC
	36

	
	
Merits of Flash ADCs and Digital Ramp ADCs
	38

	
	
Connecting an ADC to Microprocessor System
	39

	
	
Photodiodes and Optical Switches
	40

	
	
Optical-Switches
	41

	
	
A Slotted Disk Shaft Encoder
	42

	
	
A Binary Coded Shaft Encoder
	42

	
	Output Subsystems
	44

	
	
8-bit DAC Based on a Summing Amplifier
	44

	
	
Calculating the Output Voltage from a DAC
	45

	
	
Interfacing to a DAC
	46

	
	
7-Segment LED Displays
	47

	
	
Multiplexed 7-Segment LED Displays
	48

	
	
LCD Multiplexed Displays
	51

	
	
LED Dot Matrix Displays
	54

	
	
Stepper Motor
	59

	
	
Controlling a Stepper Motor
	63

	
	
Comparison of Conventional and Stepper Motors
	65

	
	Interfacing Subsystems
	66

	
	
Tri-state Buffers
	66

	
	
Data Latches
	67

	
	
Schmitt Trigger Circuits
	68

	
	
Signal Conditioning with Schmitt Triggers
	72

	
	
H-Bridge Drives
	73

	
	Robotic Systems
	75

	
	
Robots
	75

	
	
Robot System Sensors
	76

	
	
Robot System Actuators
	77

	
	
Robot Control Architecture
	80

	
	
Power Sources for Robotic Systems
	81

	
	
Control Algorithms
	83

	
	
A.I. and Neural Networks
	83

	
	
Differences between an ANN and a PC
	85

	
	
Applications of Robotic Systems
	87

	
	
Social and Economic Impact
	87

	
	
Future Development of Robotic Systems
	88

	
	
Appendix A Protoboard Sheet
	90

	
	
Appendix B Stripboard Sheet
	91

Control Systems

Candidates should be able to:

· describe the features of the generalised control system shown below;

[image: image2.wmf]Input

Processor

Driver

Output

Device

Error

Detector

Feedback

Sensor

Instructions

· distinguish between open and closed loop control systems and describe their characteristics;

· describe what is meant by feedback in a control system and give examples of systems with feedback;

· distinguish between positive and negative feedback in control systems and describe the characteristics of each.

There are two main types of control systems, Open loop and Closed loop.

An open loop system simply carries out the instructions given to the control system whereas a closed loop control system not only carries out the instructions that it is given but it also monitors its own progress in how well it is managing to carry out the instructions.

As an example consider the braking system on a car. To improve the efficiency of the brakes almost all modern cars now have 'servo' or 'power' assisted braking systems. When the driver presses the brake pedal, energy from the engine is used to increase the force applied by the driver to the brakes resulting in a greater braking force being applied.

This system can be considered to be an open loop control system and considerably improves the efficiency of the braking system so long as there is good contact between the road surface and the tyres. However, if one or more wheels stop rotating while the car is still moving, then the car is skidding and the braking efficiency is considerably reduced even though a large force is being applied to the brakes.

To overcome this difficulty a rotation monitoring system is introduced onto each wheel which provides information to the braking control system. When the brakes are now applied with this monitoring system in place, if a wheel stops rotating while the car is still moving, the braking control system reduces the force applied to the brakes of that wheel until it is just rotating again. This will maximise the friction between the tyre and the road surface and so maximise the braking efficiency of the car.

This is an example of a closed loop control system and is commercially known as 'ABS' or Anti-lock Braking System. Such systems can be mechanical or electronic.

All control systems have the same fundamental components. A generalised open loop system consists of a set of instructions, a processor, a driver and an output device as shown below.

[image: image3.wmf]Instructions

Processor

Driver

Output

Device

©ikes1001

A generalised closed loop system has two additional sections to the open loop system;
an output sensor and an error detector (often part of the processor), as shown below.

[image: image4.wmf]Instructions

Processor

Driver

Output

Device

Error

Detector

Output

Sensor

©ikes1001

The output sensor provides 'feedback' to the processor on how well the instructions are being executed by the system. If there is a difference between the instructions and the output sensor then the processor can amend the instructions so that the difference is reduced, or ideally eliminated. Such a system is then said to have Negative Feedback. This is used on the vast majority of control systems to ensure the accuracy and stability of the system.

If the processor used the output sensor information to increase the difference between the output and the instructions, then the system would be said to have Positive Feedback and would lead the system to be completely unstable. Such a control system would be rare, though under fault conditions it is possible for normally stable systems to become unstable.

Negative feedback is fundamental to all closed loop control systems. Without appropriate information from the output sensors, control systems will not function correctly. This was shown to cataclysmic proportions on the 26th April 1986 when the engineers operating the nuclear power station at Chernobyl shut down the output control sensors so that they could conduct experiments on the reactor which were outside its normal operating parameters. This resulted in the core of nuclear fuel rods melting and exploding!

We make use of negative feedback extensively in our everyday lives. The information we use for the feedback usually comes from our senses. When we speak or sing we listen to the sounds that our voices are making and adjust the sounds so that they are as intended. If the negative feedback mechanism is removed then we are unable to adjust the sound from our voices. This can be easily demonstrated by asking someone to listen to music played to them through headphones and sing along with the music. The sound produced by the singer will often bear little resemblance to what the music should sound like both in terms of pitch and volume!

Unfortunately some people have a problem with their auditory negative feedback system. When a normal person first starts to talk, the first few sounds will allow them to adjust both pitch and volume as required. But for some people, as soon as they hear a sound from their voice, the control system fails to adjust their voice as they believe it should do resulting in them being silent and stuttering. This is a similar effect to positive feedback occurring. Research has demonstrated that if the feedback mechanism is disabled by preventing the person from hearing their own voice initially, then the stuttering is usually considerably reduced.

Our eyes are also used extensively for providing feedback information. Threading a needle while looking directly at the eye of the needle is usually achievable, since the eyes enable the position of the fingers to be accurately controlled in order to accomplish the task. Trying the thread a needle while closing ones eyes at the critical time of passing the thread through the eye of the needle, is significantly more difficult, even if the eye of the needle is fairly large. Attempting to thread a needle while looking at the image of the needle and thread in a mirror is impossible (initially) as the position correction information is reversed leading to what is effectively positive feedback. However, such is the processing capacity of the brain that it will quite quickly re-interpret the position information and so successfully apply negative feedback once more.

When designing control systems with negative feedback, it is important to realise that the output sensor can only sense the output at that time. Invariably the system will be controlling something of a mechanical nature and so will possess momentum (inertia) and so will take time to respond to any change in the output signals. The processor will take a finite time to react to the information from the sensor and there will then be a finite time before the instructions to the output device are acted upon. As a result, by the time the control system has responded to a condition, the mechanical system will have moved on from when the condition was detected. The output from the control system will now be out of date and so a new correction will have to be issued by the control system. This will also be out of date by the time it has been processed, resulting in the control system constantly having to adjust the output. This can lead to a situation where the control system is said to 'hunt'.

This condition can cause considerable wear to the mechanical system.

Consider the example below. The level of water in a tank is to be kept at a constant level by supplying it with water from the water mains. The inlet water supply is controlled by an electric valve, which is either fully open or fully closed. The sensor for the level of water in the tank gives a logic 1 output if the water is above the required level and a logic 0 if below.

[image: image5.wmf]inlet

outlet

valve

tank

water

level sensor

control

system

©ikes0809

As water leaves the tank, the level of the water falls and the output of the sensor becomes logic 0. The control system opens the inlet valve and water is added to the tank until the level sensor's output becomes logic 1. The control system will process this information and then close the inlet valve, during which time water has continued to enter the tank and so the water level has risen above the required level. As water continues to leave the tank, eventually the level sensor output will become logic 0 and the information will be processed by the control system and then open the inlet valve. During this time the water level has continued to fall below the required level.

A graph of the level of water in the tank is shown below.

[image: image6.wmf]time

required

level

water level

©ikes0809

As can be seen from the graph, the time taken for both the control and mechanical systems to respond results in the water level of the tank being maintained at levels either side of the required level. While this is of no consequence for this application, it does lead to considerably wear on the water inlet valve as it is switched on and off repeatedly as soon as small amounts of water leave the tank.

A better solution for systems like this is to introduce Hysteresis, where by the level of water at which the valve switches off is different to the level at which it switches on. Such a system could be produced by having two water level sensors, one which turns the water valve on and the other which turns the water valve off.

Such an arrangement is shown in the diagram below.

[image: image7.wmf]inlet

outlet

valve

tank

water

level sensors

control

system

©ikes0809

The water level is now maintained between the two water level sensors. This considerably reduces the wear on the water valve but also reduces the accuracy for the level of the water in the tank.

There are many other applications where such inaccuracy, hysteresis or 'hunting' would be completely unacceptable.

Consider a robot arm that has to accurately place electronic components onto a circuit board. Assume that the arm is driven by normal electric motors and that sensors monitor the position of the arm. When the control system tells the arm to move to a certain position, it starts the motor and continuously monitors the information arriving from the position sensor. When the position sensor indicates that the arm is in the correct location, the control system stops the motor. But because the arm was moving and therefore has momentum, it does not stop instantly, but overshoots the required position. The control system detects this and so reverses the motor to move the arm back to the required position.

[image: image8.png]

Again when the correct position is reached the control system switches the motor off but it will again overshoot, but less than the first time because it would not be travelling so fast, and so the process repeats until eventually the arm is in the required place. Such a system would be slow, especially in the industrial environment where speed is just as importance as the accurate positioning of the components.

There are several ways in which the system could be improved. The control system could monitor the difference between the required position and the actual position of the arm and reduce the speed of the motor as the actual position is approached. Such a system would prevent the repeated overshoot of the required position but would probably take longer to reach the required position.

The graph below shows these two possible systems.

[image: image9.wmf]time

required

position

position

©ikes0809

Fortunately there is a completely different solution to the problem and that is to use 'stepper motors', and a position sensor just to check that the required position is reached.

Stepper motors are covered in a later chapter.

Microprocessor Subsystems

Candidates should be able to:

· describe the relative merits of hardwired systems and software controlled systems;

· describe the architecture of a generalised microprocessor control system consisting of microprocessor, clock, memory (ROM and RAM) and input/output ports, connected by a bus structure;

· describe the architecture of a generic single chip microcontroller;

· describe the social and economic benefits and implications of the use of microcontrollers.
Merits of Hard Wired and Software Controlled Systems.

The development of electronics over the last thirty years has been extensive. Mass production and miniaturisation has resulted in extremely complex systems being produced very cheaply. This has revolutionised the design and use of electronic control systems as well as the facilities that such systems can offer the end user. Despite all of the advertising that goes towards promoting Personal Computers (PCs), a recent survey showed that less than 10% of all microprocessors produced were used in computers. All of the others are used in control systems, ranging from mobile phones, through industrial plant controllers to children's toys. Of all of the microprocessors sold, 50% were still found to be 8-bit devices.

The design of any electronic control system should start with the construction of a functional map for the system, showing the inputs and corresponding outputs, i.e. a design specification. With this in place there are then two distinct ways in which the system can be produced. Either the functional map can be translated into a circuit diagram and then constructed using discrete logic devices and components or a programmable system can be purchased and the functional map translated into a set of instructions to make the programmable system execute the required functions. For any manufacturer, the issues to consider when making the choice between a hard wired control system and a software controlled system are:-

Cost,

Functionality,

Testing,

Reliability,

Staff expertise,

Ease of updating, modifying.

Cost. When considering cost, it is not only the component price that must be considered but the wage costs of staff in developing the systems. The mass production of programmable microcontrollers and their corresponding very low cost and size has resulted in it being cheaper to use software control systems in all but the simplest of control circuits. Using a microcontroller will result in a much smaller and simpler circuit board, so the design will be cheaper and faster as will the production of the circuit board. The overall component count will be significantly reduced since all logic functions will be handled by the microcontroller. The only additional components required will be any high power output devices and any specialised input interfaces, though these would be needed for any hardwired control system as well.

Functionality. Will the system do the job that it is designed for?

Apart from very specialised applications, software control systems will provide the same functionality as any hardwired control system. The only issues associated with the use of software control systems are:-

speed to becoming operational from being switched on. There is usually a small delay
as the processor system initialises itself. There is no such delay with a hardwired
system.

speed of operation This will be significantly less than that of a hardwired system
(although the speed of the microprocessors used is increasing daily), but for all but the
most stringent of timing systems, the speed will be more than adequate.

noise Software controlled systems, because of their very nature in having many logic
gates internally switching continuously, will generate more electrical noise than an
equivalent hard wired system. However, the very low power consumption of many
software controlled systems ensures that the noise level is acceptable. All electronic
equipment must now conform to the ElectroMagnetic Compatibility (EMC) laws, both
in terms of the amount of electrical noise that a circuit can emit as well as its
behaviour when subjected to electrical noise. The possibility of the Engine
Management Control system of a car failing when the car is in the outside lane of a
motorway because of a lightning flash or a mobile phone, is a frightening thought!

Testing. Invariably, any hardwired control system will have a more complex circuit board than a software controlled system, and so it usually costs more to test a hardware system than a software system. The only exceptions are for very complex systems, when the software system can end up costing more to test. With complex systems the software will often be written by a team of programmers and it is essential that all of their respective pieces of software code interact reliably and predictably. For very large software control programs it is very difficult to ensure that every possible part of the system is fully tested. This has not always been the case and has led to some disastrous accidents. A crash of one of the early European Airbus aircraft was attributed to a software fault in the fly by wire control system, as was a crash of one of the early American stealth bombers. The spectacular destruction of the first of a new generation of Arianne rockets was the result of software control system not having been updated and fully tested. The loss of an American Martian lander vehicle was attributed to some of the control software being set up in inches and other in centimetres!

Reliability. As a general rule, the more discrete components there are on a circuit board, and the hotter those components get, the shorter the life of the system. Since most software control systems have significantly less discrete components and many are optimised for low power consumption, the overall reliability of such systems is often higher than the equivalent hardwired control systems.

Staff expertise. To produce a hardwired control system, a company will need to employ electronic engineers and technicians in order to design, produce and test the system. For a software control system, there was also be the need to employ a system programmer as well as electronic engineers and technicians. However the situation is changing as ever more powerful software becomes available for computers. Printed circuit design programs have been around for many years. Circuit modelling software has also been around for many years (e.g. SPICE) but is now so sophisticated that software models of individual new components are readily available from the component manufacturers via the Internet. So what would have taken a team of electronic engineers and technicians to design, build and test, the task can now be done by much quicker and with far less staff and with the vast majority of the work being done on a virtual circuit board within a computer system. Only when the model is successful in the virtual computer world will it be committed to hardware and tested again. This benefits both the hardwired and software control systems. But recent advances in computer programs mean that for the software system there is now no need to write any actual code for the controller as there are now programs available that will take the functional map for a system and convert it to instructions to be executed by microcontrollers. This development, along with the computer modelling software and circuit board design software, means that very complex systems can be quickly and cost effectively developed without the need for highly qualified specialists.

Ease of Updating / modifying. This really is the area where software control systems excel. Complete changes can be made to the operation of a software control system without any changes to the hardware at all. So if a fault was discovered during a production run for software controllers, all the hardware would be usable, just the programmed instructions would have to be changed, which could be done very quickly. The consequences for a hardwired system would be major and would involve having to individually hand work each circuit board, or scrap all of the circuit boards, reconfigure the production machine and then start the production again.

Software control systems also have the advantage that the same circuit board design could be used for a large range of applications, e.g. washing machine, tumble dryer, microwave cooker etc., so reducing manufacturing costs. All that would be needed would be a different set of instructions for each appliance.

Architecture of Generalised Microprocessor System.

There are two main types of architecture found in microprocessor control systems. The traditional von Neumann architecture uses a single set of wires (bus) along which both program and data instructions are fetched. This is the architecture on which most multi IC microprocessor control systems are based. The other common system is known as the Harvard architecture and in this the program instructions and the data are accessed on separate buses. This architecture is usually used in single IC microcontroller systems, e.g. PICs and AVRs and enables a much greater processing rate to be achieved.

A generalised von Neumann type programmable system is shown below showing the main sections. Each of the sections is connected to three sets of wires known as 'buses'.

[image: image10.wmf]address bus

data bus

port

input

RAM

port

output

ROM

processor

clock

control bus

©ikes0809

Hexadecimal Notation. Most numbers and values for microprocessors are written as hexadecimal numbers. These can be written in several ways, including:- FA16, FAh, &HFA, 0xFA, 0XFA

Read Only Memory (ROM) contains the instructions that the processor is to follow. The instructions are still retained within the IC even when the power is removed and is said to be non-volatile. A ROM cannot be modified and so if the system is to behave in a different manner then a new ROM will be needed. For development work, Electrically Erasable Read Only Memory (EPROM) is available which can be reprogrammed electrically, but will still retain the instructions when the power is removed.

Random Access Memory (RAM) is where the processor can store information (write) and from which it can also read information. The information can be accessed in any order (random access) but the information is not usually retained after the power is disconnected.

Such memory is said to be volatile.

Input Ports are used to put information into a programmable system. When the processor wants information from its input transducers it will access the input port and read information into the system.

Output Ports are used by a programmable system to put information into the outside world. When the processor needs to put information to its output transducers it will access the output port and write information from the system to the output transducers.

Processor is where the instructions that are stored in the ROM are executed and where any decisions are made. Processors range from the very simple devices that are used to control microwave cookers to the very complex devices now used in personal computers (PCs). These devices are usually serial in operation, i.e. they are only able to follow one instruction at a time.

Clock is a crystal controlled astable that keeps the processor and the rest of the system synchronised. This is essential if the system is to be reliable and not corrupt information as it passes along the buses.

Buses are the transport system for the electronic signals that pass between the sections of the control system. There are three main types of signals that are needed:-

a)
data

b)
addresses

c)
control signals.

The data and address signals are multi-bit digital signals sent in parallel, usually with +5V representing a logic 1 and 0V representing logic 0, although there are some systems available with logic 1 being represented by voltages as low as 1.1V.

The control signals are often one bit digital signals.

Buses are used to prevent a proliferation of connections between the various sections of a programmable control system. Usually there is a separate bus for each of the three types of signals although there are some systems that use a shared bus for the data and address signals.

A bus can be thought of as being like a railway line connecting several stations together. Trains travel between the stations using the same track. Obviously, with a railway, care must be taken to ensure that two different trains do not require the track at the same time. The same is also true for electronic signals.

The data bus carries information around the system and is bi-directional. It is connected to all sections of the system.

These various sections need to be able to put information onto and take information from the data bus and so need to be physically connected to it. Reading information from the data bus is not a problem since all of the various sections of the system have high impedance inputs.

Putting information (writing) onto the data bus is more of a problem, since only one device can write data at a time. If two (or more) devices were to try to put data onto the data bus at the same time there would be a bus contention. This would be like two trains using the same section of track at the same time! Smoke would come out of somewhere! The short circuit would either cause one of the devices to fail or the track connecting them to melt.

To overcome this problem, all devices which put data onto the data bus are connected through Tri-state drivers. These drivers have three possible states -

"high", "low" and "disconnected", i.e. +5V, 0V and floating

This is so that when the device is NOT selected, its output just floats up and down with the signals on the data bus and so do not interfere with the data bus signals.

[image: image77.wmf]©ikes0809

A

15

A

8

A

7

A

0

CS

output

[image: image78.wmf]©ikes0809

A

7

A

0

CS

output

M/IO

[image: image79.wmf]START

END

Yes

No

switch display

to show alarm

time

read time

is the

alarm time

correct?

adjust the

alarm time

©IKES0809

The tri-state drivers are controlled by the address bus and control lines and have an
output enable, (OE) control pin which makes their outputs high impedance when the (OE) pin is logic 1. Many devices for use on data buses have tri-state drivers built into them,
 e.g. analogue to digital converters, (ADCs), memory devices etc.

Every device in the microprocessor system that needs to receive or send data, outside the processor, needs a unique address. The address bus is used to carry the address signals around the system, and each device is connected either directly to the address bus or to an address decoder that is connected to the address bus.

The number of unique addresses is directly determined by the width of the address bus (number of separate wires). A 16 bit address bus can address 216, or 65536 different memory locations while a 32 bit address bus has 232, i.e. 4,294,967,296 addresses, a maximum of 4 gigabytes of directly addressable memory.

The control bus consists of signals from the processor and are mostly one bit. The actual number of control signals depends upon the type of processor used but some typical control signals are discussed below.

[image: image80.wmf]START

Set SC pin

to logic 0

END

Yes

No

Read state

of EoC pin

Is

EoC pin

logic 1?

Read data

from ADC

©IKES0809

Set SC pin

to logic 1

[image: image81.wmf]START

END

Yes

No

Read number

of loops

Subtract 1 from

loop number

Is

loop number

zero?

©IKES0809

[image: image82.wmf]START

END

Yes

No

Write data

to port

Read Wait

control line

Write control line

for data present

Is

Wait

logic 1?

Is

there any

more data to

write to the

port?

No

Yes

©ikes0809

The read/write (R/W) control signal. When the microprocessor wants to read information from memory or from an input port it signals this by setting the R/W line to logic 1. When the microprocessor wants to write information into memory or to an output port it signals this by setting the R/W line to logic 0.

[image: image83.wmf]a

b

c

d

e

f

g

©IKES0809

dp

The Chip Select (CS) control signal. This is used when the microprocessor wants to access a peripheral chip

[image: image84.wmf]D

0

D

7

+5V

a

b

c

d

e

f

g

220

W

220

W

220

W

220

W

220

W

220

W

220

W

220

W

a

b

c

d

e

f

g

decimal point

©IKES0809

D

1

D

2

D

3

D

4

D

5

D

6

P

O

R

T

A

m

i

c

r

o

l

l

e

r

c

o

n

t

o

r

[image: image85.wmf]0V

+

_

V

in

V

out

20k

10k

+12V

–12V

V

–

V

+

©IKES0809

0V

W

W

The Interrupt ReQuest (IRQ) control lines. Most of the time the flow of data in or out of the processor through the data bus is controlled by the program code operating in the processor. But there are events that occur in a processor control system that must not wait. These include inputs from the keyboard, co-processors and messages from
input/output ports to indicate that processes are complete (such as conversions by A to D converters.) or that the mains power has failed. The attention of the processor is attracted when the IRQ line is taken to logic 0. The processor will then finish executing the current instruction, save all of the current values in its registers, identify which device has requested an interrupt and then service the interrupting device. When this is completed the processor will return to the task it was doing before the interrupt occurred. Interrupts via the IRQ line are known as Maskable Interrupts because they can be disabled by the programmer, for time-sensitive routines.

There is another interrupt request line which can not be disabled.
This is known as the Non-maskable Interrupt (NMI) line. When taken to logic 0 it has the same effect as the IRQ line. The use of the NMI line is usually restricted to very important devices i.e. hard disk drives, etc.

Input and output devices are connected to microprocessor systems through ports.

Some microprocessors require these ports to be addressed as part of the overall memory and are said to be Memory Mapped.

Other microprocessors use a separate control signal, Memory/Input-Output (M/IO), to switch between memory addresses and input/output addresses.

These ports are said to be I/O Mapped.

There are advantages and disadvantages to each system. In general, both systems use the Address Bus to provide the address of the port. Memory mapping of I/O ports is easy to implement and the resulting ports are treated and programmed just like any other memory location. However, it does restrict the amount of RAM and ROM that can be connected to the microprocessor. The diagram opposite shows a circuit to decode a 16 bit memory address to a memory mapped port at the address 00FF16. The output will be a logic 1 when the memory address is 00FF16 and the address is selected, i.e. CS is logic 0.

I/O mapping of ports requires the microprocessor to have the additional M/IO control line. The status of this line determines whether the information on the address bus is a memory address or the address of an I/O port. As a result, this additional control signal has to be included into the address decoding for every memory location, so making I/O mapping more complex to implement. However, I/O mapping does have the advantage that it does not restrict the amount of RAM and ROM that can be addressed by the microprocessor.

Microprocessors that have a M/IO control line usually only use the first 8 bits of their address bus for addressing I/O ports. The diagram opposite shows the equivalent I/O mapped circuit to decode an I/O mapped port at the address FF16. The output will be a logic 1 when the memory address is FF16, the address is selected, ie CS is logic 0 and M/IO is
logic 0.

While this is a simpler circuit than the equivalent Memory Mapped circuit, it should be remembered that the M/IO control line has to be incorporated every time there is information on the address bus, i.e. for every memory location.

There are many other control lines that are used by microprocessors. The Intel Pentium D processor, for example, has in excess of 100 separate control lines. It also has 64 data bus lines, 36 memory address lines, 226 positive power supply connections and 273, 0V connections!

Associated with programmable systems (and PCs are really only complex programmable systems!) has grown a set of words and phrases or jargon. The more common ones are listed below along with their meanings.

	bit
	binary digit, is a single 1 or 0 from a binary number

	byte
	8 bits, usually used to represent one character

	address
	A number which refers to each unique memory element in RAM and ROM.

	data
	the information read by and written from the processor.

	read
	when the processor takes in information or data from either ROM, RAM or the input port.

	write
	when the processor gives out information or data to either the RAM or the output port.

	hardware
	the general name for the actual electronic circuits that make up the programmable system.

	software
	the general name for the instructions that are followed by the processor.

	bus
	a common set of wires connecting together the memory elements of a programmable system. There are two main buses:-

	data bus
	responsible for carrying all of the information

	address bus
	carries the information to identify which memory element is required

	tristate buffer
	a device to which the output of each memory element is connected.
It has three possible output states; it can be a 1, a 0 or a very high resistance. It enables the data bus to function by disconnecting those memory elements not in current use.

	registers
	data is stored here before or after processing. The number and type of registers depends on the processor.

	accumulator(s)
	these are special registers into which the result of any arithmetic or logical process is placed. Some processors have more than one accumulator. In microcontrollers the accumulator is usually known as the Working Register

	flag register
	A special register where each of eight bits (Flags) indicate certain features of the last computation made. These flags can be used to determine what happens next. e.g.

	a zero flag
	is set to 1 if the result of the last operation was zero;

	a sign flag
	is set to 1 to indicate if the content of the Accumulator is negative;

	a carry flag
	that indicates if the maximum number has been exceeded.

	arithmetic logic unit
(ALU)
	performs arithmetic or Boolean logic operations on the data.

	program counter (PC)
	This contains the address of the next instruction.

	instruction decoder
	This interprets each program instruction into a set of electronic conditions that make the data move around appropriately through the processor, and operates the control lines.

	stack pointer (SP)
	is a register containing the address of a region of memory called;

	the stack
	The stack is used as a temporary store for data, and grows in size as data is added, falling as data is removed. It is often located at the top of the memory with the current stack value decreasing as the stack fills up It is used sequentially i.e. last in, first out. The stack pointer is needed to identify the end of the stack.

Systems on a Chip (SoC) PICs and AVRs.

The concept of having a complete microcontroller (processor, RAM and ROM) on a single chip was far sighted in that such devices would enable the simplification of much of the circuitry required for electronic control of commercial, industrial and domestic equipment. Two companies in America began work on such SoCs in the late 1980s. Microchip Technologies produced the PIC (Programmable Interface Controller) in the early 1990s and Atmel released the AVR soon after. The success of these devices is largely due to their cost and processing ability. Since they are programmable devices they can be used in many applications and so can be mass produced which ensures low cost. Both PICs and AVRs are based on the Harvard architecture and initially incorporate 8-bit Reduced Instruction Set Computer (RISC) processor having only a few tens of instructions. This small number of instructions also improved the take up and use of these devices as they did not require the high degree of training needed to program them when compared to processors having Complex Instruction Sets Computer (CISC).

Since there are separate buses for the program instructions and data information, the instructions do not have to be restricted to being 8-bits wide like the data. In fact the early PICs used a 12-bit instruction set, later moving to 16-bits for some of the more complex devices. The AVRs use as standard a 16-bit word format for their instructions. The use of separate data and program buses enables 'pipe-lining' to be implemented so that while one instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to be executed in every clock cycle.

The early success of these devices prompted the manufacturers to add more facilities onto the chip including real time clocks, counter / timers, power on reset circuitry, Input and Output ports, Analogue to Digital Converters, Serial Input and Output ports etc. The whole chip is implemented in Complementary Metal Oxide Semiconductor (CMOS) and so has an inherent low power consumption. This coupled with a sleep mode makes them suitable for battery operated equipment as well. The clock speed of PICs and AVRs is wide ranging and many will operate at clock frequencies as high as 80MHz. While this may seem slow compared to the latest Intel processors, the specially optimised instruction set and with programs written in machine code, instructions ensures that they are able to carry out many operations and processes very quickly and efficiently.

Architecture of PIC and AVR Devices.

In order to show the differences between the architecture of PICs/AVRs and discrete IC programmable controllers, a generic block diagram is shown below. It is based on one common family of PIC devices, the PIC16CXX. The major difference between the block diagram of a PIC and AVR device is that the instruction address bus and program data buses are 16-bit wide instead of the 12-bits shown in the diagram.

The actual number of ports on the devices depends upon the type number but it is not unusual for there to be as many as four parallel ports, a serial port, and four analogue to digital converter ports an some of the more complex PICs and AVRs.

Generic block diagram of a PIC/AVR.

[image: image11.wmf]EPROM

1K x 12 bits

program

memory

program counter

stack

RAM

file

registers

200 bytes

processor

timer

instruction register

instruction

decode &

control

8-bit data bus

12-bit program bus

direct address bus

port A

buffer

input

output

latch

port C

buffer

input

output

latch

device

reset

timer

power-on

reset

watchdog

timer

clock

interrupt

controller

©ikes0809

port B

buffer

input

output

latch

Social and Economic Implications of Single IC
Programmable Control Systems (SoCs)

The effect of single IC programmable control systems on modern life has been significant. They have permeated all areas of modern appliances and machines and their effect will continue to increase as more powerful devices are developed. They are already used extensively in modern domestic appliances, e.g. washing machines, microwave cookers, video recorders, CD players etc. with the result that complex features can be incorporated into them as standard features. Most modern road vehicles have Engine Management Systems (EMS) controlling the operation of the engine. The heart of the EMS is a PIC or AVR which not only is able to maintain the efficient operation of the engine but is also able to monitor the operation of the engine and determine when servicing is required as well as help diagnose faults. Vehicles are just beginning to appear which have many programmable controllers incorporated which are able to monitor every aspect of the car, not just the engine. As a result, if it rains the windscreen wipers are switched on; if it goes dark the lights are turned on etc. without the driver having to take any action. Such cars obviously have ABS as a standard fitting which is controlled by a programmable controller. With so many electronic systems on board, the repair and maintenance of such vehicles becomes a specialised business.

The availability of many cheap computer peripherals e.g., printers, digital cameras, scanners etc. is also largely due to the use of control SoCs. They are able to monitor precisely the mechanical operation of these items and correct for imperfections in the mechanics of the peripheral. The result is that less precise mechanisms can be used, so reducing cost, but the controller is able to maintain the overall quality.

Each mobile phone has its own programmable control system on board to take care of the frequency management as the phone moves from one cell to another. Since this is a vital role but one that does not use a significant amount of processing power, it leaves the processor free for other tasks, like managing an address/phone number data base, generating ever complex (and annoying) ring tones, running games on the phone screen etc. However, since a mobile phone has to communicate with the local base station regularly when it is switched on so that the mobile phone system knows that it is available to receive calls, it means that the location of the phone is also known to within a few hundred metres. So you cannot hide if you have a mobile phone switched on!

The next major development with SoCs will be in their use in Smart cards. These will be the next version of credit and bank cards which will be able to store information about the owner as well as be used for intelligent information exchange in shops etc. The potential growth in this market is very large.
With the increasing complexity of the software used in microcontroller systems, it becomes very difficult to ensure that the software is reliable under all of the operating conditions that may be encountered. While it may be an inconvenience if a fault in the software causes the front door on a microprocessor controlled washing machine to suddenly open while the machine is full of water, software faults in engine management systems could be fatal. Consider the theoretical situation in which a car, with a microcontroller engine management system, pulls out to overtake a vehicle. The driver sees an oncoming vehicle in the distance and in order to ensure a completely safe overtake, changes into a lower gear. However, if an undetected software fault in the EMS causes the engine to falter and a crash results, no evidence of the software fault would be found in the subsequent enquiry, and the driver would be blamed for the accident.

There is still controversy surrounding the crash of the Mk2 Chinook helicopter ZD576 on the Mull of Kintyre in 1994, in which 29 people died including the two pilots, Flight lieutenants Trapper and Cook. In the subsequent Ministry of Defence enquiry, the pilots were found guilty of gross negligence. However, subsequent enquiries and press interest (mainly Computer Weekly) have raised questions about the reliability of the software used in the engine control system on the aircraft.

It is therefore vital that all software is fully and exhaustively tested to ensure that all operating conditions are covered reliably.

Programming

Candidates should be able to:

· analyse a process into a sequence of fundamental operations;

· convert a sequence of fundamental operations into a flow chart;

· interpret flow charts and convert them into a generic microcontroller program;

· recognise and use a limited range of assembler language microcontroller instructions (see Data Sheet, Appendix E);

· write subroutines to:

configure the input and output pins

read data from a sensor

write data to an output device

give a specified time delay

give a specified sequence of control signals

perform simple arithmetic and logic operations

detect events using polling and hardware interrupts;

compare the use of hardware interrupts and polling to trigger events;

interpret programs written with a limited range of assembler instructions.

This section of the Electronics subject specification is not to make every student into an expert programmer, there are other complete GCE A levels for this.

Instead the aim is for students to gain sufficient knowledge of programming to be able to test the electronic systems that they design.

In the commercial world, once the electronics engineer has developed and perfected the electronic system, it would then be handed over to a programmer to write the control program that will be used in the actual product.

However, whether writing test programs or the fully functional program for the system, it is essential that the ability to think logically is developed and that complex sequences of operations can be broken down into small, simple sequences that can then be translated into programs.

Flow chart diagrams are one of several graphical methods that can be used to aid logical thought and are employed to help determine the sequence of operations required.

Flow Charts

The Flow Chart symbols in the diagram below are those used both in this booklet and in the subject specification.

[image: image12.wmf]START

END

INPUT

OUTPUT

PROCESS

COMPARE

Yes

No

©IKES0809

The best way to learn how to construct and interpret flow diagrams is by practice both at drawing flow diagrams and by studying examples such as the one below which describes setting the alarm on an alarm clock.

The flow diagram is self explanatory and shows the correct use of the various symbols.

It is good practice to try to analyse everyday basic tasks into the separate steps that could be put into a flow chart and then to try writing a flow chart for that task, e.g. design a flow chart to produce a soft-boiled egg.

It is useful to remember that most programmable systems are very simple and can only operate on one instruction at a time. There should be no multiple processes going on at the same time in any flow chart!

When designing flow charts, it is useful to identify each of the operations needed for a particular process. The following examples may help.

Consider a programmable control system reading in data from a sensor. If the sensor is analogue then it will need an
Analogue to Digital Converter (ADC) to change the analogue signal into a digital signal which the control system can understand.
A detailed description of ADCs is given in the next chapter on Input Subsystems, but for the moment it is sufficient to know that an ADC needs a short logic 0 signal to be applied to its
Start Conversion (SC) pin in order to make the conversion process start. When the ADC has finished the conversion,
it sets its End of Conversion (EoC) pin to logic 1.
A suitable flow chart for this process is shown opposite.

In this flow chart the processor keeps checking to see when the EoC pin of the ADC becomes logic 1. Such an operation is known as 'polling' and while it is very simple to implement it does use the full processing power of the processor and so stops the processor from carrying out any other operations. In the vast majority of cases this is not a problem and so is often used in simple test programs.

While some programmable systems have real time clocks that can be used for time delays, many do not. An easy way of generating a delay is to make the processor execute a simple program a large number of times. Such time delay loops are not accurate enough for time keeping because of any interrupt routines that may run during the timing operation, but are suitable when the time period is not critical.
The flow chart for a simple time delay is shown opposite.

Writing data to an output port can be a simple process unless there is a large amount of data to transfer to a slow output device.

Consider an example where the output device is slow.

If there was no flow control for the data between the process controller and the output device then the output device would not be able to keep up with the transfer of data and so information would be lost.

To prevent this, a flow control system has to be established. This often takes the form of the process controller sending a pulse to the output device when there is valid data for the output device to read.

The output device will then set a 'Wait' control line, say to
logic 1, as an indication to the process controller that it should wait and not send any more data.

When the output device has 'digested' the data it then sets the Wait control line to logic 0.

The process controller detects this and so makes the next byte of data available.

A flow diagram to enable this process to occur is shown opposite. It is worth noting the point in the program at which the process controller sends the signal to say that the data is available.

Converting Flowcharts into Programs

In order to be able to fully test a programmable system, it is obviously necessary to be able to write sufficient programs to activate every section. In order to do this it is essential for the electronics engineer to have some programming skills. The same skills for programming are required no matter what programming language is being used, the most important skills being to think logically, be able to break complex operations into single step functions and to remember that the programmable system will only do what you tell it to, which is not necessarily the same as what you want it to do!

There are three main types of programming languages:-

Machine code, the 1s and 0s that the machine understands directly,

Interpreted languages, including some Assemblers, Basic, Pascal, Visual Basic etc.

Compiled languages including some Assemblers, Delphi, C++ etc.

Despite the general move to Object Orientated Languages, there is little new in programming. Modern computers work so much faster and have much more storage capacity than they did in the past that modern languages take advantage of this. No matter what processor is being used, it will only be able to understand instructions that are written in its native language, Machine Code. These instructions consist of numbers and for most people are completely incomprehensible. Associated with each machine code instruction is a mnemonic, a sort of English abbreviation to explain what the instruction does.

The following examples are machine code instructions for the Intel 80X86 series of processors:-

the instruction 0x93, has a mnemonic XCHG BX, AX and means exchange the contents of the BX and AX registers while

the instruction 0xBA1C0F, which has a mnemonic of MOV DX, 0F1C and means move or load the number 0F1C into register DX.

Assembly language is a language that will translate the mnemonics into machine code.

This can be done in one of two ways depending upon the Assembly language. Some interpret the instructions when the program is executed, i.e. they will take each mnemonic instruction, translate it into machine code and then execute the machine code instruction.

Other Assembly language programs, when executed, will translate each mnemonic instruction into a machine code instruction and then store these machine code instructions in a separate place in memory, i.e. it Compiles the machine code instructions. Once all of the mnemonic instructions have been compiled the processor will then execute the machine code instructions.

As can be seen from the above descriptions Interpreted programs run slower than Compiled programs, but with modern processors operating so fast, and Interpreted programs being more interactive, they are eminently suitable for the testing of programmable systems.

While Assembler makes some attempt to use recognisable words as instructions, higher level languages e.g. Basic, Pascal, C, Java, Python etc. use English phrases as the instructions. These are then Interpreted or Compiled to machine code instructions for execution.

It makes sense when writing programs to break them up into small sections that can easily be tested (just like the actual electronic systems themselves which are built and tested as subsystems). These small sections have various names depending upon which program is used. ‘Basic’ calls them Subroutines, while Pascal calls them Procedures and C++ calls them Objects. These small sections can then be accessed from the main program when needed.

For example, a subroutine could be written to send data to an output port. Then whenever data has to be sent to this port, the data is passed to the subroutine, which outputs the data and then returns control back to the main program.

The AQA Microcontroller and Assembly Language.

The AQA specification assumes a generic microcontroller with a Harvard architecture and the following specification:-

· a clock speed of between 1 and 20MHz;

· an accumulator or working register, W, through which all calculations are performed;

· a program counter, PC;

· three 8-bit bi-directional ports - PORTA, PORTB and PORTC;

· three data direction registers TRISA, TRISB and TRISC, to determine whether the bits of each port are inputs or outputs. If a bit is set to 1 then the port bit is an input, if the bit is set to 0 then the port bit is an output.
E.g. if TRISA = 0x01, then bit D0 of PORTA is an input and bits D1 to D7 of PORTA are outputs.

· a status register, SR, for which bit 0 is the carry flag, C, and bit 2 is the zero flag, Z;

· a clock prescaler, PRE, which can be set to divide the clock frequency by 2 to 256.
If PRE is set to 1, then the clock frequency is divided by 2. If PRE is set to 2 then the clock frequency is divided by 3, etc
In general, the clock frequency is divided by PRE + 1.
If PRE is set to 0, then the timing function is disabled;

· an 8-bit timer register, TMR, which is decremented on each falling edge of the clock prescaler pulse and which sets bit 1 of the status register, SR, when it is 0.

This specification requires candidates to be familiar with a limited range of assembler language microcontroller instructions which are listed on the next page and will also be available on the Data sheet included with the examination paper.

Within the Assembler Language Instructions it is useful to note:-

· the memory is made up of registers, each with its own separate address, R;

· the contents of a register are indicated by putting the register address in brackets
e.g. (R)

· K is used to represent a literal,
which can be a memory location (e.g. 0x29),
a label (e.g. display) or
a value, (e.g. 0xFA);

· standard arithmetic and Boolean operators, e.g. add K to W etc;

· the number of clock cycles needed to execute an instruction, since this will affect the response time of the system;

· the Flags that are affected by each of the instructions;

· comments can be added to instructions by writing them after either a semicolon ; or a double forward slash //. E.g.
NOP

; This instruction takes one clock cycle to execute
NOP

// This instruction takes one clock cycle to execute.

After a Master Reset (or when the power is switched on), the program counter register PC is set to zero (0x00) which makes the microcontroller start to execute the instructions at address 0x00. The microcontroller will continue to execute the instructions in order unless the value in PC is changed either by a Jump instruction or a subroutine Call instruction.

	Mnemonic
	Operands
	Description
	Operation
	Flags
	Clock cycles

	NOP
	none
	No operation
	none
	none
	1

	CALL
	K
	Call Subroutine
	stack <=(PC) + 1
PC <= K
	none
	2

	RET
	none
	Return from Subroutine
	PC <= stack
	none
	2

	
	
	
	
	
	

	INC
	R
	Increments the contents of R
	(R) <= (R) + 1
	Z
	1

	DEC
	R
	Decrements the contents of R
	(R) <= (R) - 1
	Z
	1

	
	
	
	
	
	

	ADDW
	K
	Add K to W
	W <= W + K
	Z, C
	1

	ANDW
	K
	AND K with W
	W <= W • K
	Z, C
	1

	SUBW
	K
	Subtract K from W
	W <= W - K
	Z, C
	1

	ORW
	K
	OR K and W
	W <= W + K
	Z, C
	1

	XORW
	K
	XOR K and W
	W <= W (K
	Z, C
	1

	
	
	
	
	
	

	JMP
	K
	Jump to K (GOTO)
	PC <= K
	none
	2

	JPZ
	K
	Jump to K on zero
	PC <= K if Z=1
	Z=1
	2

	JPC
	K
	Jump to K on carry
	PC <= K if C=1
	C=1
	2

	
	
	
	
	
	

	MOVWR
	R
	Move W to the contents of R
	(R) <= W
	Z
	1

	MOVW
	K
	Move K to W
	W <= K
	Z
	1

	MOVRW
	R
	Move the contents of R to W
	W <= (R)
	Z
	1

	
	
	
	
	
	

Assembly Language Instructions

	NOP
	This instruction has no effect on any of the registers or flags. But it does take one clock cycle to execute and so can be used to create short time delays and can be useful for synchronising input and output operations.

	CALL K
	Subroutines are a useful way of being able to make frequently needed groups of instructions available anywhere within a program. They are also a convenient way of breaking up a program into manageable sections. To transfer execution to a subroutine, the instruction CALL is used.

CALL is followed by the memory address of the start of the subroutine or the label pointing to the start of the subroutine, e.g. CALL 0x7B, CALL delay.
The CALL instruction takes 2 clock cycles to execute because it has to increment the current value of the program counter, PC, and then store it onto the stack; decrement value in the stack pointer, and then load the address of the subroutine into the program counter.

Call does not alter any Flags.

	RET
	This instruction is used to end a subroutine and transfer execution back to the main program. It does not take any additional information and does not alter any flags. It does take 2 clock cycles to execute and this should be considered in systems where there are time constraints.

In operation, the last value stored in the stack is loaded into the PC and the value in the stack pointer is incremented.

	INC R

DEC R
	These instructions are used to increase or decrease the contents of a register by 1. Both instructions take one clock cycle and so are quickly executed.

Both instructions are followed by the register address.

In operation, the contents of the register is increased or decreased by 1 and the result stored back in the register.

If, as a result of these instructions, 0 is loaded back into the register, then the Zero flag, Z, is set.

	ADDW K

ANDW K

SUBW K

ORW K

XORW K
	These instructions provide arithmetic and Boolean operations. All take one clock cycle to execute. They operate on the contents of the Working register, W, and restore the resulting value back in W.

If the value loaded back into W is zero then the Z flag is set to 1.

If the value loaded back into W is greater than 255 or less than 0, then the Carry flag, C, is set to 1.

	JMP K
	This instruction is used to change the location of the next instruction to be executed. It differs from the CALL instruction as no return address is stored. It can be thought of as a GOTO instruction. The JMP instruction is followed by the address of the next instruction to be executed or a label pointing to the address, e.g. JMP 0x7B or JMP delay

In operation, this address is loaded into the program counter, PC and takes 2 clock cycles to execute.

	JPZ K
	This instruction is used to change the location of the next instruction to be executed ONLY IF the zero flag, Z, is set. It is followed by the address of the next instruction to be executed or a label pointing to the address,

e.g. JPZ 0x7B or JPZ delay

In operation, if Z is 1, then this address is loaded into the program counter, PC. If Z is 0 then the PC is not changed. Either way the instruction takes 2 clock cycles to execute.

	JPC K
	This instruction is used to change the location of the next instruction to be executed ONLY IF the carry flag, C, is set. It is followed by the address of the next instruction to be executed or a label pointing to the address,

e.g. JPC 0x7B or JPC delay

In operation, if C is 1, then this address is loaded into the program counter, PC. If C is 0 then the PC is not changed. Either way the instruction takes 2 clock cycles to execute.

	MOVWR R
	This instruction is used to move the contents of the W register into the register R. It takes 1 clock cycle to execute and the zero flag, Z, is set if the value stored in R is 0.

	MOVW K
	This instruction is used to move the value, K, into the working register, W.

It takes 1 clock cycle to execute and the zero flag, Z, is set if the value stored in W is 0.

	MOVRW R
	This instruction is used to move the contents of the register, R, into the working register W. It takes 1 clock cycle to execute and the zero flag, Z, is set if the value stored in W is 0.

	
	

Using Assembly Language Instructions

Below are some examples of the use of assembly language instructions for some frequently used operations. It is assumed in all of these examples that the microcontroller has a clock speed of 1MHz.
Setting the direction of the bits of a port.

The system needs PORTA to have D0, D1, D2 to be inputs and D3 to D7 to be outputs.

This is achieved by:-

working out the binary value to be written to the data direction register TRISA,

converting it to hexadecimal,

moving this value into the working register, W,

moving the contents of W into TRISA.

Since a 1 sets the bit to input and a 0 sets the bit to output, the binary value is 00000111.

This is 0x07 as a hexadecimal number.

To put this value into W, the instruction is MOVW 0x07.

To move W to TRISA, the instruction is MOVWR TRISA.

So the assembler code is

MOVW 0x07

MOVWR TRISA

This technique can be applied to any of the bits of any of the ports of the microcontroller and takes 2µs to execute.

Masking bits in registers.

There are many occasions where it is just the value of a particular bit within a register that is of interest e.g. an input bit of a port, a flag within the status register, SR, etc. masking is achieved by ANDing the value in the register with a value that reduces all unwanted bits to 0.

Consider the following example.

PORTA has been set so that D0, D1, D2 are inputs and the other bits are outputs.

The system needs to know the value of just D0 and D1.

To mask all of the other bits it is necessary to work out the binary value when D0 and D1 are both 1 and all of the other bits are 0. This gives a value of 00000011 = 0x03.

If the value of PORTA is moved to W and then ANDed with 0x03, all of the bits except
D0 and D1 will be turned to zero.

To move PORTA into W, the instruction is MOVRW PORTA
To AND W with 0x03, the instruction is ANDW 0x03

So the assembler code is

MOVRW PORTA

ANDW 0x03

Generating a very short time delay

This is usually achieved by repeatedly using the NOP instruction. Each NOP instruction takes 1µs to execute and so

NOP

NOP

NOP

NOP

NOP

generates a time delay of 5µs

Generating a time delay

It is wasteful of memory to produce time delays longer than a few microseconds using the technique above. The microcontroller has special facilities to achieve longer time delays which are based on two special registers, the prescaler register, PRE, and the timer register, TMR. They can be thought of as being arranged as below.

[image: image13.wmf]clock

PRE

TMR

bit 1 of SR

PRE is used to divide the clock frequency by a ratio that can be programmed into it. If PRE has the value of 1, then the clock frequency is divided by 2, if PRE has a value of 2, then the clock frequency is divided by 3, etc. In general the clock frequency is divided by PRE + 1.

The maximum value that the clock frequency can be divided by is 256.

If PRE is set to 0, then the timing functions are disabled.

The operation of PRE and TMR is independent of what ever else the microcontroller is doing, so the microcontroller can be carrying out other tasks while awaiting for the delay to occur.

The value in the TMR register decreases by 1 on each falling edge of the pulses from PRE. To obtain a particular time delay, the values to load into PRE and TMR need to be carefully chosen. Often there is more than one set of values that will achieve the delay.

E.g. A delay of 2ms is needed, and the microcontroller has a clock frequency of 1MHz.

One way of achieving this delay is to load PRE with 7 (0x07), which will then divide the clock frequency by 8, so giving a period of 8µs. If TMR is then loaded with 250 (0xFA), it will decrease by one every 8µs and so will reach 0 after 2ms and then set bit 1 of the status register, SR.

The same result could also be achieved by loading PRE with 124 (0x7C) and TMR
with 16 (0x10).

The following assembler instructions are used to load PRE and TMR with the first set of values:-

MOVW 0x07

// Move 7 (0x07) into W

MOVWR PRE
// Move the contents of W into PRE

MOVW 0xFA

// Move 250 (0xFA) into W

MOVWR TMR
// Move the contents of W into TMR

To detect when TMR reaches zero, bit 1 of SR can be polled by the microcontroller.

This can be achieved by:-

moving SR into W,

ANDing W with 0x02 to mask all but bit 1

Jumping back to the start if the zero flag is set.

When the time period has finished, bit 1 will be 1 and so the jump will not occur.

So the full assembly instructions to achieve a 2ms delay are:-

MOVW 0x07

// Move 7 (0x07) into W

MOVWR PRE
// Move the contents of W into PRE

MOVW 0xFA

// Move 250 (0xFA) into W

MOVWR TMR
// Move the contents of W into TMR

loop1:

// Label for the start of the checking loop

MOVRW SR

// Move the contents of SR into W

ANDW 0x02

// AND the contents of W with 2

JPZ loop1

// Jump to loop1 if the zero flag is not set, i.e. TMR is not zero

It should be noted that the time delay from this program will be slightly longer than 2ms.

It takes 4µs to initially set up the PRE and TMR registers and there is an error of between 4 and 7µs from the last three lines of code depending on when exactly TMR becomes zero. For accurate timing these errors need to be considered and it would be more accurate to set TMR to 249 instead of 250 which would then give an error of between 0 and 3µs.

Generating a long time delay

The maximum delay that can be achieved with a 1MHz clock and PRE and TMR both set with 255 is approximately 65.5ms.

To achieve longer delays still it is necessary to use additional registers as counters.

The example below uses the 2ms delay code above to give a delay of 0.5s (500ms). A register with an address which will not interfere with either the stack or the program is chosen as an additional timing register. In this example the register at 0xA0 will be used.

To achieve a 500ms delay requires 250 loops of the 2ms delay, so the register 0xA0 is preloaded with 250 (0xFA) which is decreased by one on each loop until it reaches zero.

The assembly instructions for a 500ms delay are:-

// Set the value for PRE. Since this is not changed by the

// program it only needs to be set once.

MOVW 0x07

// Move 7 (0x07) into W

MOVWR PRE
// Move the contents of W into PRE

// Set the value for the timing register 0xA0

MOVW 0xFA

// Move 250 (0xFA) into W

MOVWR 0xA0
// Move the contents of W into 0xA0

// The 2ms delay

loop2:

// Label for the 2ms delay

MOVW 0xF9

// Move 249 (0xF9) into W (corrected for timing errors)

MOVWR TMR
// Move the contents of W into TMR

loop1:

// Label for the start of the checking loop

MOVRW SR

// Move the contents of SR into W

ANDW 0x02

// AND the contents of W with 2

JPZ loop1

// Jump to loop1 if the zero flag is not set, i.e. TMR is not zero

// Every 2ms the timing register value is decreased by 1

DEC 0xA0

// Decrement the value in register 0xA0

// Check if the value is zero.

JPZ end

// Jump to end if the zero flag is set

JMP loop2

// Jump to loop2 if the zero flag is not set, i.e. (0xA0) is not zero

end:

// label for the end of the timing loops

Again there will be timing errors which can be minimised by adjusting the value in TMR.

Even longer time delays can be obtained by having multiple additional timing registers cascaded together.

Hardware Interrupts and Polling

There are two ways in which a microcontroller can monitor the state of input and output devices which are connected to its ports. The most efficient, in terms of processor time, is to use Hardware Interrupts. When an input / output (I/O) device needs attention, it sets an Interrupt ReQuest (IRQ) control line (often to logic 0). The microcontroller immediately detects this and gets itself ready to deal with the interrupt request. It does this by completing the instruction it is executing and then goes to a subroutine which has been written to service the interrupting I/O device. When it has completed servicing the IRQ, it returns to the place in the program where it was when it received the IRQ and continues execution of the original program.

With complex microprocessor system, there can be many devices that make use of Interrupts. It is therefore likely that while the microprocessor is servicing one IRQ a second device will also request an Interrupt. To prevent the microprocessor getting completely overloaded with IRQs, each device which can generate Interrupts is usually given a 'priority' and the microprocessor then deals with them in priority order.

Interrupts are extensively used internally in microcontroller systems and it is usual for the TRM register to generate an internal interrupt when it reaches zero. However, neither internal or external interrupts are documented for use within the general microcontroller specified for this course.

The alternative way of determining whether an I/O device needs attention is to regularly monitor the state of the port to which it is connected. This is known as POLLING and does not make efficient use of the processors time. However, for the electronics engineer testing sections of a control system it is perfectly adequate.

Polling was used with the timing delay example programs listed earlier, where by the TMR and the zero flags were continuously monitored.

Further examples will be given later in the booklet in the sections on input and output devices.

Interpreting Programs Written in Assembler

Interpreting an Assembler program is more than just stating the 'English' equivalent of each statement. Interpreting requires the function and purpose of each statement to be explained clearly so that the overall operation of the program can be read like a story (even if the plot is a bit weak!)

A program that is correctly written, with user friendly labels, and documented with comments should present little difficulty in interpreting. It can be useful to create a list of the variables that are used within a program and write by the side of each its precise function.

The only difficulties are usually in tracking loops and conditional statements. For each of these it is worth marking onto the listing of the program to show any branches and loops.

A program that is badly written can take a long time to decipher and for such programs it is often worth rewriting the program substituting sensible loop names and adding comments to explain what is happening.

It is useful to remember that when any programs are written as part of coursework projects, both supervisors and moderators will need to be easily able to interpret their function, especially when supervisors will be expected by candidates to immediately diagnose why a candidate's program is not doing what the candidate wanted it to do!!

Input Subsystems

Candidates should be able to:

· draw a block diagram for an 8-bit digital ramp Analogue to Digital Converter, ADC, and explain its operation;

· describe uses of an ADC;

· describe the limitations of this type of ADC;

· describe the circuit for a Flash ADC and explain its operation;

· calculate component values for a Flash ADC;

· compare the relative merits of flash ADCs and digital ramp ADCs;

· describe the use and operation of reflective and slotted optical switches;

· describe the use and operation of a slotted disk shaft encoder;

· describe the use and operation of a binary coded shaft encoder;

· explain why a Gray coded shaft encoder is preferred in practice to a binary coded encoder.

8-bit Digital Ramp ADC

An ADC is a subsystem that converts an analogue voltage into a digital value representing this voltage. Their use is extensive, ranging from measuring equipment to entertainment.

The simplest type of ADC uses a digitally generated linear ramp. This can come from a microcontroller or from a binary counter and is converted to an analogue voltage using a DAC. This analogue ramp voltage is compared with the input signal, using a comparator. When the ramp voltage exceeds the signal voltage the output from the comparator changes state and the counter is stopped. The digital value of the input voltage is read from the counter or processor register.

Below is the block diagram of a typical 8-bit digital ramp ADC.

[image: image14.wmf]DAC

counter/

microcontroller

comparator

control

logic

SC

input

interface

analogue

output

digital

EoC

©IKES0909

The analogue voltage to be converted is connected to the analogue input interface. This subsystem limits the input voltage to a safe level for the comparator.

The comparator compares the analogue input voltage with the voltage from the DAC. When the output voltage from the DAC exceeds the analogue input voltage, then the output of the comparator changes. The output of the comparator controls the counter/microcontroller subsystem via the control logic subsystem.

The control logic subsystem controls the digital output of the counter/microcontroller going into the DAC. The SC input (Start Conversion) sets a latch which allows the counter/microcontroller to increment the value passed to the DAC. This latch is reset and stops the digital value being incremented when the DAC voltage has exceeded the analogue input voltage and the comparator output has changed. The EoC output (End of Conversion) shows when the conversion has finished and the latch reset.

The counter/microcontroller subsystem provides the digital input for the DAC.

The digital output subsystem is a data latch that remembers the digital input to the DAC when the comparator output changed.

A discrete component version of an 8-bit digital ramp ADC is shown in the diagram below. The Start Conversion (SC) signal sets the latch, resets the counter and opens the AND gate to allow pulses into the counter. The digital counter output is converted by a DAC and compared with the input signal. When the ramp voltage exceeds the input signal, the comparator output goes high giving an End of Conversion (EoC) signal and resets the latch so stopping any more pulses reaching the counter. The digital value equivalent to the analogue input voltage can be read from the data latch.

[image: image15.wmf]comparator

DAC

data latch

counter

oscillator

latch

gate

AND

S

R

Q

Q

digital output

R

SC

signal input

analogue

–

+

EoC

monostable

©IKES0809

8-bit bus

The diagram below shows how an 8-bit ADC could be constructed with a microcontroller.

It also shows a typical analogue input interface, which limits the input voltage range to
-0.6V to 12V.

[image: image16.wmf]signal input

DAC

+

_

comparator

D

0

D

7

0V

10k

W

2N3904

10k

W

1M

W

12V

1N4148

TL071

op-amps supply +/- 15V

©IKES0809

4.7k

W

+5V

m

i

c

r

o

c

o

n

t

r

o

l

l

e

r

P

O

R

T

A

P

O

R

T

B

D

0

SC

D

1

PORTA of the microcontroller supplies the DAC with the 8-bit digital input. Bit D0 of PORTB detects when the output of the comparator changes.

When the output voltage from the DAC exceeds the analogue input voltage, the comparator output goes high. The 10kΩ resistor and 1N4148 diode protect the base of the transistor by limiting the base current and also stops the input becoming negative. With the output of the comparator high, the D0 input to PORTB will be logic 0.

The conversion is started by making SC logic 0.

A possible control program for the microcontroller is shown below:

// Set all bits of PORTA to be outputs

MOVW 0x00

// Move 0 into W

MOVWR TRISA
// Move the contents of W to TRISA

// Set PORTB so that D0 and D1 are inputs

MOVW 0x03

// Move 3 into W

MOVWR TRISB
// Move the contents of W to TRISB

// Check to see if SC is logic 0

start:

// Label for loop to check if SC is logic 0

MOVRW PORTB
// Move the contents of PORTB to W

// Mask all but bit D1

ANDW 0x02

// AND W with 2

JPZ main

// Go to the main program if SC is logic 0

JMP start

// Repeat the loop to check if SC is logic 0

main:

// Label for the beginning of the main conversion program

// Set the input of the DAC to 0 by setting PORTA to 0

MOVW 0x00

// Move 0 to W

MOVWR PORTA
// Move the contents of W to PORTA

loop1:

// Label for the beginning of the loop to check if the

// conversion is complete

// Check to see if D0 is logic 0, i.e. conversion complete

MOVRW PORTB
// Move the contents of PORTB to W

// Mask all but bit D0

ANDW 0x01

// AND W with 1

JPZ value

// Go to the ‘end of conversions’ if D0 is logic 0

INC PORTA

// Increase the value in PORTA by 1

// If the analogue input voltage is outside the conversion

// range then the conversion will never occur.

// It is therefore important to check that the value in

// PORTA does not exceed 255.

JPZ error

// If PORTA exceeds 255 and becomes 0 then the

// zero flag is set and control is passed to an error

// handling subroutine stored elsewhere in memory

CALL delay

// It may be necessary to slow down the conversion

// process so that the DAC has time to reach a steady output.

// Delay is a subroutine elsewhere in memory.

JMP loop1

// Repeat the conversion loop

value:

// Label for the end of conversions

MOVRW PORTA
// Move the digital equivalent of the analogue voltage to W

The main problem with this type of ADC is that it is slow since it is limited by the conversion time of the DAC. For a voltage near the maximum, up to 2n-1 operations of the DAC may be needed, where n is the number of digital bits.

So for an 8 bit ADC, (0.4% resolution), up to 255 cycles may be required. During this time the input signal may be changing, which can lead to serious conversion errors. This type of ADC is essentially unusable except for long-period monitoring, where readings are taken infrequently. A sample and hold circuit could be used to store the analogue signal, initiated by the start conversion signal. This would keep the input voltage constant during conversion.

The conversion process can be improved by using s successive approximation technique instead of using a ‘ramp voltage’.

In the successive approximation method the value of each bit of the digital value is determined in turn and starts by setting D7 to 1 and all of the other bits 0. The output from the comparator is checked to see if the analogue voltage on the input is greater or less than the voltage from the DAC. If the comparator output is high, then D7 will be 0 and vice versa, so the value of D7 is set.

The process is then repeated with the value for D7 and D6 being set to 1 (all other bits being zero). Checking the output of the comparator will again determine the value of D6.

The process is repeated for all of the other bits in turn.

It would be a useful exercise to rewrite the program on the previous page to use this technique.

This will lead to a conversion in 8 steps, which while faster than the true digital ramp technique could still take many microseconds to complete. This would be no use for converting audio or video signals into digital signals and so a much faster method is required.

Flash ADC

Flash ADCs are used for very fast conversion. Their main disadvantage is cost as they are expensive.

The flash converter has one comparator for every possible binary state, as in the diagram on the next page for a three bit ADC. So for an 8-bit ADC, 255 identical comparators are needed The comparators compare the input voltage with reference voltages produced from a precision voltage generator and a voltage divider made from identical resistors.

Identical resistors are used for the voltage divider since it is easier to manufacture identical resistors than precision values. The actual value does not matter, so long as the resistors are identical, the reference voltage will be divided into equal values.

In the example on the next page it can be seen that the comparators switch at:-

1.0V,
2.0V,
3.0V,
4.0V,
5.0V,
6.0V and 7.0V.

The outputs of the comparators are all connected to a logic circuit which determines, very quickly, the digital output of the ADC.

[image: image17.wmf]+

_

+

_

+

_

+

_

+

_

+

_

+

_

D

0

D

1

D

2

+8.00V

analogue

ground

digital

ground

digital

output

3 bit

8 to 3

digital

encoder

V

in

1.00k

W

1.00k

W

1.00k

W

1.00k

W

1.00k

W

1.00k

W

1.00k

W

1.00k

W

1

2

3

4

5

6

7

©IKES0210

0V

0V

While there are standard ICs that will perform the 8 line to 3 bit encoding (e.g. 74HC148) it is a useful exercise to consider how this could be achieved using normal logic gates.

The complete output is shown in the truth table below.

	
	1
	2
	3
	4
	5
	6
	7
	
	D0
	D1
	D2

	
	0
	0
	0
	0
	0
	0
	0
	
	0
	0
	0

	
	1
	0
	0
	0
	0
	0
	0
	
	1
	0
	0

	
	1
	1
	0
	0
	0
	0
	0
	
	0
	1
	0

	
	1
	1
	1
	0
	0
	0
	0
	
	1
	1
	0

	
	1
	1
	1
	1
	0
	0
	0
	
	0
	0
	1

	
	1
	1
	1
	1
	1
	0
	0
	
	1
	0
	1

	
	1
	1
	1
	1
	1
	1
	0
	
	0
	1
	1

	
	1
	1
	1
	1
	1
	1
	1
	
	1
	1
	1

	
	
	
	
	
	
	
	
	
	
	
	

Each output needs its own encoder. Consider D0. It needs to be logic 1 when:

Op-amp 7 output is logic 1,

Op-amp 5 output is logic 1 and op-amp 6 output is logic 0,

Op-amp 3 output is logic 1 and op-amp 4 output is logic 0,

Op-amp 1 output is logic 1 and op-amp 2 output is logic 0,

So a logic circuit for D0 is

[image: image18.wmf]1

2

3

4

5

6

7

D

0

©IKES0809

It is a useful exercise to devise an encoding circuit for D1 and D2.

Multi-bit flash ADCs would have their encoders fabricated from Field Programmable Gate Arrays (FPGA). These are integrated circuits consisting of a very large numbers of logic gates which can be programmed by applying voltages to produce very complex logic systems.

Multi-bit flash ADCs are very expensive because of the requirement for many comparators and identical resistors. A 12 bit encoder requires 212 -1 (4095) comparators, each with a precision of at least 1 part in 4096 (i.e. 0.025%) or better.

Often such precision is needed. A -10 to 110SYMBOL 176 \f "Symbol"C thermometer read to 0.1SYMBOL 176 \f "Symbol"C requires a precision of 1 part in 1200, requiring at least an 11 bits ADC.

Note, if a 10 volt system is being used, a precision of 1 part in 1000 (i.e. 10 bits) corresponds to a signal voltage change of just 10mV. A 16 bit, 10V system is sensitive to signal changes of just 160SYMBOL 109 \f "Symbol"V!

Electrical noise is a serious problem in ADCs since the logic circuit generates many transient electrical signals as the various logic gates switch. It is important to ensure that the input signal is kept away from the digital output. Correct use of the separate analogue and digital grounds on ADCs is vital to minimise problems with noise.

Merits of flash ADCs and Digital Ramp ADCs

The various advantages and disadvantages of Flash and Digital Ramp ADCs has already been considered in their respective sections. They are summarised in the table below.

	
	FLASH ADC
	DIGITAL RAMP ADC

	COST
	Very expensive owing to the large number of comparators and identical resistors needed.
	Cheap. Can be implemented with a DAC and a comparator.

	SPEED
	Extremely fast especially when made with high speed comparators e.g. LM311.
	Slow to very slow. Only suitable for relatively slow changes in the analogue input.

	POWER CONSUMPTION
	High because of all of the comparators.
	Generally low.

	APPLICATIONS
	Digitisation of video and high quality audio signals
	Multi meters and Environmental monitors.

Connecting an ADC to Microprocessor System

The block diagram of a generic ADC is shown below.

[image: image19.wmf]ADC

data

latch

analogue

signal

input

analogue

ground

EoC

digital

ground

to data input

port of

processor

OE

SC

©IKES0809

To control an ADC, a processor needs to have one-bit write lines going to the Start Conversion (SC) and the Output Enable (OE) terminals. It also needs a one-bit read line going to the End of Conversion (EoC) line and a multi-bit (8, 12 or 16) read port. The conversion process begins with the processor writing a logic 0 to the Start Conversion terminal and then monitoring the EoC terminal. When the ADC has finished the conversion, it sets EoC to logic 1. This tells the processor that the data in the data latch is valid and so the processor can write a logic 0 to the Output Enable terminal and then read the data into the port. The whole process can then be repeated as necessary.

This is shown diagrammatically below in the timing diagram.

[image: image20.wmf]SC

EoC

OE

data

valid

data

time

©IKES0809

Photodiodes and Optical Switches

The PN junctions in diodes and transistors are light-sensitive. Photons cause electron-hole pairs to be formed, producing a current that is directly proportional to the light intensity.

A photodiode diode takes advantage of this by having a transparent window through which light can enter. It is usually used in reverse bias and the leakage current increases in proportion to the amount of light falling on the diode.

Photodiodes are used in a wide range of electronic circuits ranging from accurate light measuring equipment to high speed optical counters.

[image: image21.wmf]anode

cathode

cathode

anode

window

©IKES0809

A photo diode can be interfaced in several ways, three of which are shown below.

[image: image22.wmf]©IKES0809

V

out

R

i

(a)

0V

+

_

V

out

0V

-V

R

i

i

(c)

0V

V

out

+

_

i

i

R

(b)

0V

The simplest circuit (a) treats the photodiode as a current source, and loads it with a resistor to obtain Vout = i × R.

But the current is small (1 electron per photon!), and the high resistance of the circuit to get measurable voltages at low light levels means that measuring systems attached to the output must have very high resistance. The maximum value of Vout is about 0.6 volt.

To overcome this problem, an op- amp can be used, as in circuit (b), to provide current and to act as a buffer. R may be of the order of 10MSYMBOL 87 \f "Symbol". Still Vout = i × R.

Faster response, for the same sensitivity, can be achieved by using the photodiode with reverse bias, as in circuit (c). The same current is produced because these are intrinsic electron-hole pairs being created at the junction by the photons but the op-amp acts as a buffer.

Optical-Switches

A LED and photodiode pair is often used as a digital sensing device.

A suitable circuit is shown below.

[image: image23.wmf]+V

s

0V

©IKES0809

V

out

+

_

R

0V

They can be used either in a transmission or a reflection mode. Applications are widespread, including whole revolution counting, measurement of shaft rotation rate, speed measurement, etc. A typical example of each type of optical switch is shown below.

[image: image24.wmf]slotted

opto-switch

opto-switch

reflective

©IKES0809

A slotted opto-switch can be used to detect the presence of an obstacle between the LED and photo-transistor so preventing the light from the LED reaching the photo-transistor.

Reflective opto-switches consist of the LED and a photo-transistor side by side. When a reflective obstacle is placed near to the switch, light from the LED is reflected back to the photo-transistor.

Older type computer mice contain two slotted optical switches for detecting the movement of the ball, one for left / right and the other for forwards / backwards.

A Slotted Disk Shaft Encoder

Angular rotation can be measured using a disk containing either marks or slots and an optical switch as shown in the diagram below.

[image: image25.wmf]©IKES0809

optical switch

If the disk has slots then either a reflective or slotted optical switch could be used. If marks are used on a solid disk then a reflective switch must be used.

This sort of rotation detector can only be used to determine how far the disk has rotated but not the direction of rotation of the disk or its absolute position.

To determine the direction of rotation of the disk it is necessary to use two optical switches slightly offset from one another, so that it is then possible to determine which optical switch is activated first as each slot/mark passes.

To determine the absolute position of the disk as well, it is usual to use a coded disk.

An example of a binary coded disk is shown below.

A Binary Coded Shaft Encoder

[image: image26.wmf]©IKES0809

D

C

B

A

optical switches

This disk contains four rings and so needs four optical switches to detect the position. The rings are coded to give a binary output, with the inner ring providing the most significant bit and the outer ring the least. This arrangement is used since the inner ring rotates a smaller distance, and so it is more difficult to detect small changes in position using optical switches. However, this does not matter so much for the most significant bit as there is only one change per revolution of the disk.

Resolution

The resolution of a shaft encoder is the smallest angle that the disk has to rotate through for a change in angle to be determined. It can also be thought of as the largest angle which the disk can rotate for there to be no change detected, which is essentially the same as the first statement if the optical switches are ideal.

To determine the resolution of a slotted disk shaft encoder, the number of slots is divided into 360°. For the example on the previous page, there are 16 slots and so the resolution is 22.5°.

The resolution of a binary coded shaft encoder is determined by the number of sectors in the outer ring. As with the slotted disk shaft encoder, this number is divided into 360°. For the example on the previous page, there are 16 sectors and so the resolution is 22.5°.

Gray coded shaft encoder.

A major problem with binary coded shaft encoders is that often more than one bit changes at a time. Owing to imperfections in the optical switches and the disk itself, it is almost impossible to arrange for two or more optical switches to be triggered simultaneously. In the example on the previous page, the worst case is when the disk rotates from binary value 1111 to 0000, as this requires all four optical switches to operate simultaneously. If they do not then false information on the position of the disk will transiently occur.

To overcome problem, many shaft encoders are encoded with the Gray code, in which only one bit changes at a time. An example of a Gray coded shaft encoder is shown below.

[image: image27.wmf]©IKES0809

optical switches

D

A

B

C

D

Output Subsystems

Candidates should be able to:

· describe the circuit for an 8-bit Digital to Analogue Converter, DAC, based on a summing amplifier and explain its operation;

· describe uses of a DAC;

· calculate component values for a DAC;

· calculate the output voltage from a DAC;

· describe the use and operation of multiplexed seven segment displays (LCD and LED);

· describe the use and operation of multiplexed dot matrix displays;

· describe the different types of stepper motor;

· describe the use and operation of stepper motors;

· describe the essential differences in operation between conventional motors and stepper motors.

8-bit DAC Based on a Summing Amplifier

A simple 8-bit Digital to Analogue Converter (DAC) can be constructed using an op-amp in a summing amplifier circuit.

A basic 4-bit DAC is shown on page 39 of the ELEC2 Support booklet. To convert it to an 8-bit DAC four additional input resistors need to be added as shown below.

[image: image28.wmf]R

1

R

f

0V

V

out

+

_

D

1

D

2

D

3

R

2

R

3

R

0

D

0

D

4

D

5

D

6

D

7

R

4

R

6

R

7

R

5

+

_

10k

W

10k

W

TL071

TL071

op-amp power supplies +/-15V

©IKES0809

P

R7 = Rf,
R6 = 2Rf,
R5 = 4Rf,
R4 = 8Rf

R3 = 16Rf
R2 = 32Rf
R1 = 64Rf
R0 = 128Rf
The point labelled P on the circuit is a virtual earth point. The logic inputs, are D0, D1, D2, D3, D4, D5, D6, D7, with D7 being the most significant bit. The logic inputs are either logic 0 (0V) or logic 1 (often +5V). When an input is logic 1, a current to pass through its input resistor (R0 – R7). These currents cannot pass into the op-amp because it has such a large input resistance and so must pass through Rf. This causes a voltage to appear across Rf so resulting in a negative output voltage from the first op-amp which is directly related to the digital number applied to the inputs. The second op-amp functions as a unity gain inverting amplifier, so that the DAC gives a positive output.

Such a simple DAC is unsuitable for accurate conversions since it has two main failings.

While the output voltage from a logic gate is nominally 5V, it does vary from output to output. The principle of operation of this type of DAC relies on all of the input voltages being exactly the same and so errors in conversion will occur.

The resistors have to be very accurate multiples of the feedback resistor, Rf. Such resistors would be difficult to manufacture and so expensive. For a DAC having a conversion error of less than 1% would require the resistors to be accurate to 0.1%, assuming that the input voltages were all the same. However, a demonstration circuit can be made from the following standard 5% resistor values:

R7 = Rf = 10kSYMBOL 87 \f "Symbol"

R6 = 20kSYMBOL 87 \f "Symbol" (10kSYMBOL 87 \f "Symbol" + 10kSYMBOL 87 \f "Symbol")

R5 = 40kSYMBOL 87 \f "Symbol" (39kSYMBOL 87 \f "Symbol" + 1kSYMBOL 87 \f "Symbol")

R4 = 80kSYMBOL 87 \f "Symbol" (68kSYMBOL 87 \f "Symbol" + 12kSYMBOL 87 \f "Symbol")

R3 = 160kSYMBOL 87 \f "Symbol" (150kSYMBOL 87 \f "Symbol" + 10kSYMBOL 87 \f "Symbol")

R2 = 320kSYMBOL 87 \f "Symbol" (220kSYMBOL 87 \f "Symbol" + 100kSYMBOL 87 \f "Symbol")

R1 = 640kSYMBOL 87 \f "Symbol" (560kSYMBOL 87 \f "Symbol" + 82kSYMBOL 87 \f "Symbol")

R0 = 1280kSYMBOL 87 \f "Symbol" (1.2MSYMBOL 87 \f "Symbol" + 82kSYMBOL 87 \f "Symbol")

Commercial DACs are based on the R-2R network, which can provide conversion accuracy of less than 0.1% at sensible prices. Such DACs are outside the scope of this specification.

Calculating the Output Voltage from a DAC

To calculate the output voltage from a DAC, with the component values in the example above, requires the use of the summing amplifier formula. This is given on the data sheet with each question paper.

Assume that logic 1 is +5V and logic 0 is 0V.

Consider when the input to the DAC is the value 0xA2. This needs to be converted to its binary value 10100010.

Using the general summing amplifier formula

[image: image29.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

+

-

=

R

V

R

V

R

V

R

V

3

3

2

2

1

1

f

out

then

[image: image30.wmf]V

328125

.

6

640

1

40

1

10

1

50

640

5

40

5

10

5

10

V

out

-

=

÷

ø

ö

ç

è

æ

+

+

-

=

÷

ø

ö

ç

è

æ

+

+

-

=

Since the second op-amp is a unity gain inverting amplifier, the output voltage for an input of 0xA2 is 6.33V

Interfacing to a DAC

A generic block diagram for a DAC is shown in the diagram below, which consists of a Data Latch and the summing amplifier (or R – 2R network). The conversion starts when the processor writes the data into the DAC's latch using the Enable line (EN). The DAC produces an analogue output from the data and the output remains valid until the next byte of data is written to the DAC's latch.

[image: image31.wmf]DAC

data

latch

analogue

signal

output

analogue

ground

digital

ground

from data

output port

of processor

EN

©IKES0809

The timing diagram for the conversion process is shown below.

[image: image32.wmf]EN

valid

data

data

output

port

latched

data

previous

data

new data

analogue

output

time

©IKES0809

7-Segment LED Displays

A 7-segment display consists of an array of LEDs arranged as in the diagram opposite.

The bars of LEDs are designated with letters so that each bar can be referred to in circuits, dp referring to the decimal point. To reduce the number of connections to a seven segment display, either all of the anodes of the LEDs are connected together, forming a
common anode display, or the cathodes are joined forming a common cathode display.

With a common anode displays, the common anodes of the LEDs are connected to the positive power supply line. The cathodes are then taken to 0V by the driving circuit to make the LEDs light. The 7447 IC will operate a common anode display and convert a binary input from 0 to 9 to the correct output on the display. This IC will supply (sink) up to 40mA per segment.

With the common cathode displays, the cathodes are connected to 0V. The anodes of the LEDs are then taken high by the driving circuit to illuminate the LEDs. The 4511 IC will operate a common cathode display and convert a binary input from 0 to 9 to the correct output on the display. This IC will supply (source) up to 25mA per segment.

Many microcontrollers will also sink and source up to 25mA from their output ports and so can directly operate
7-segment LED displays, as shown in the diagram opposite for a common anode display.

In an attempt to save on components it might be thought that all of the LED series resistors could be replaced with one 220Ω resistor. If this is done then the brightness of the display would vary with the number of segments lit, which would be unsatisfactory.

In order to light the required LEDs to produce numbers it is simply a case of calculating what number to send to the output port. E.g. the number 1 requires that elements b and c are lit and the rest are switched off. Since the circuit above is common anode, D1 and D2 must be logic 0 and all of the others, logic 1. So the binary number that must be sent to the output port is 11111001 (0xFA). To produce the number 0, all of the bits from D0 to D5 must be at logic 0, with D6 and D7 at logic 1. I.e. the binary number 11000000 (0xC0) must be sent to the output port.

It is a useful exercise to work out what numbers must be outputted to display the other numbers. It is also useful to devise outputs to display the characters up to 15 in hexadecimal.

Multiplexed 7-Segment LED Displays

Nearly all measuring equipment needs more than one 7-segment display for its output. With the basic circuits, each 7-segment display will need its own decoder/driver IC, current limiting resistors etc leading to a high component count. To reduce the component count a technique known as Multiplexing is used, whereby each display is powered in turn and the rest of the time it is switched off. So long as this process is repeated fast enough, the persistence of vision of the eye, approximately 50ms, will make it appear as if all of the displays are lit. In this way, only one decoder driver IC is required plus a transistor switch for each display. It also means that a microcontroller with two 8-bit output ports could directly drive up to eight 7-segment displays.

The diagram below shows a possible arrangement for four common cathode displays.

All of the segment letters are connected in parallel giving just one connection for all of the ‘a’, one for ‘b’ etc through to one for ‘dp’. These are connected to PORTA of a microcontroller.

The common cathode of each display connects to a transistor switch, so that each display can be switched on in turn. These are controlled by PORTB.

[image: image33.wmf]a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

0V

R

©IKES0809

P

O

R

T

B

m

i

c

r

o

l

l

e

r

c

o

n

t

o

r

D

0

D

7

D

1

D

2

D

3

D

4

D

5

D

6

D

0

D

1

D

2

D

3

P

O

R

T

A

R

R

R

R

R

R

R

R

b

R

b

R

b

R

b

A

B

C

D

In this example, each display is only switched on for 25% of the time and so will only appear to be 25% as bright as if the display was not multiplexed. It is excessive heat that damages LED displays, so if the overall power dissipation of each segment, averaged over one complete display cycle stays the same, the display segments will not be damaged. So this disadvantage can be overcome by passing four times the current to pass through each segment. So if the non multiplexed current per segment is 20mA, then 80mA could be allowed to pass without damage. Since most microcontrollers limit the output current from their ports to 25mA, it would be necessary to insert a high current driver between PORTA and the current limiting resistors to achieve the full brightness of the display.

Assuming that the current through each segment is 25mA, then if all of the segments of a display are switched on (including the decimal point), a current of 200mA will be passing through the cathode and the transistor switch. Care must therefore be taken when selecting the transistor switches to ensure that they can handle this maximum current.

Calculating The Resistor Values.

Assuming that the switching transistors have a current gain (Ic/Ib) of 100, then in order to have a maximum collector current of 200mA, it will be necessary for them to have a base current of 2mA. If the output voltage from PORTB is 5V and the base-emitter voltage of the transistor is 0.7V, then the voltage across the base resistor will be 4.3V and so the base resistor will be 4.3 / 0.002 = 2150Ω. The nearest suitable preferred value for this will be 2kΩ,

though a slightly lower value will help ensure that the transistor is saturated (fully switched on) and so dissipating minimum power.

Obviously, the switching transistors could be replaced with MOSFETs and then these resistors could be eliminated as the gates of the MOSFETs can connect directly to PORTB.

To calculate the series resistors for the LEDs, it is necessary to look up in the display data sheets the forward voltage for each segment. For Red and Green displays, this will be approximately 2V. When a transistor is saturated, its collector voltage is approximately 0.2V. So if PORTA supplies 5V, the voltage across the LED series resistor is 5 – 2 – 0.2 = 2.8V. If the current per segment is 25mA then R = 2.8 / 0.25 = 112Ω, the nearest preferred value being 110Ω, though a 120Ω resistor is likely to work as well.

Controlling the display.

Each of the digits of the multiplexed display needs to be activated in turn.

To switch on digit A, it is necessary to make D0 of PORTB a logic 1 and D1, D2 and
D3 logic 0. This is achieved by writing 0x01 to PORTB.

Switching on digit B only, is achieved by writing 0x02 to PORTB.

Switching on digit C only, is achieved by writing 0x04 to PORT B.

Switching on digit D only, is achieved by writing 0x08 to PORT B.

To display 1 on digit A, it is necessary to power segments b and c, which are connected to D1 and D2 of PORTA in this example. So the value 0x06 must be written to PORTA.

To display 2 on digit B, bits D0, D1, D3, D4 and D6 must be logic 1 so the value 0x5B must be written to PORTA.

To display 3 on digit C, bits D0, D1, D2, D3 and D6 must be logic 1 so the value 0x4F must be written to PORTA.

To display 4 on digit D, bits D1, D2, D5, and D6 must be logic 1 so the value 0x66 must be written to PORTA.

So to show 1 2 3 4 on the multiplexed display, the microcontroller should write 0x06 to PORTA and 0x01 to PORTB to display 1 on digit A.

It should then pause for 10ms (or so) to allow the observer to see the digit.

Then it should write 0x5B to PORTA and 0x02 to PORTB to display 2 on digit B.

It should then pause again for 10ms (or so) to allow the observer to see the digit.

Then it should write 0x4F to PORTA and 0x04 to PORTB to display 3 on digit C.

It should then pause again for 10ms (or so) to allow the observer to see the digit.

Then it should write 0x66 to PORTA and 0x08 to PORTB to display 4 on digit D.

It should then pause again for 10ms (or so) to allow the observer to see the digit and then start again with digit A.

Possible assembler instructions for the microcontroller to do this are shown below.

// Set PORTA to be output

MOVW 0x00

// Move 0 into W

MOVWR TRISA
// Move the contents of W to TRISA

// Set PORTB so that D0 to D3 are outputs

MOVW 0xX0

// Set less significant nibble to 0. The value of the more

// significant nibble does not matter and so is shown as an X

MOVWR TRISB
// Move the contents of W to TRISB

loop1:

// Label for the display loop

//Display 1 on digit A

MOVW 0x06

// Move 6 into W

MOVWR PORTA
// Move the contents of W to PORTA

MOVW 0x01

// Move 1 into W

MOVWR PORTB
// Move the contents of W to PORTB

CALL delay

// Call a subroutine, ‘delay’, which is elsewhere in memory

// and which gives a delay of 10ms

//Display 2 on digit B

MOVW 0x5B

// Move 0x5B into W

MOVWR PORTA
// Move the contents of W to PORTA

MOVW 0x02

// Move 2 into W

MOVWR PORTB
// Move the contents of W to PORTB

CALL delay

// Call a subroutine, ‘delay’, which is elsewhere in memory

// and which gives a delay of 10ms

//Display 3 on digit C

MOVW 0x4F

// Move 0x4F into W

MOVWR PORTA
// Move the contents of W to PORTA

MOVW 0x04

// Move 4 into W

MOVWR PORTB
// Move the contents of W to PORTB

CALL delay

// Call a subroutine, ‘delay’, which is elsewhere in memory

// and which gives a delay of 10ms

//Display 4 on digit D

MOVW 0x66

// Move 0x66 into W

MOVWR PORTA
// Move the contents of W to PORTA

MOVW 0x08

// Move 8 into W

MOVWR PORTB
// Move the contents of W to PORTB

CALL delay

// Call a subroutine, ‘delay’, which is elsewhere in memory

// and which gives a delay of 10ms

JMP loop1

// Go to the beginning of the display program and start again.

This program would continue to show the numbers 1, 2, 3, 4 on the display until the power was turned off or the microcontroller reset.

LCD Multiplexed Displays

LED displays have two main disadvantages; they consume significant power and are difficult to read in bright sunlight. They do have the advantages that they can be seen in the dark, switch quickly and are physically robust.

Liquid Crystal Displays, LCDs, are the exact opposite of LED displays; they consume little power and are easily read in bright light, but they are delicate, switch slowly and, to be read in the dark, they have to have a light behind them (back lit), which consumes power.

[image: image34.wmf]+

©IKES0809

Liquid crystal materials are substances which, though liquid, exhibit optical properties similar to solid crystals over their working temperature range which is typically -5oC to +65oC. They were first discovered in about 1889 by H Reinitzer, an Austrian botanist, but he could find no practical use for them and so they remained a chemical novelty until the 1970s when their use as electronic displays was realised. Liquid crystals are organic compounds and have elongated molecules, (best visualised as greasy transparent 'sausages'), which end in a polar group.

The first liquid crystal to be discovered was Cholesteryl benzoate.

The molecules possess strong dipoles and easily polarisable groups.

The electric dipole-dipole interactions between molecules give rise to intermolecular forces which align the molecules side by side with their long axes parallel.

There are three main types of liquid crystal materials, known as smetic, nematic and cholesteric, but it is mainly the nematic class of materials that are used in electronic displays. The molecules of this type arrange themselves with their long axis parallel to one another, but take up any position along their axes with respect to adjacent molecules, so that they exhibit a 'grain' but do not form layers.

A typical nematic liquid crystal display takes the form of flat panels which consist of two glass plates, each about 3mm thick, separated by a layer of liquid crystal material of thickness 0.025mm. The glass plates are hermetically sealed at their edges. The inside surfaces of the glass plates have deposited on them a transparent conducting layer in the form of the pattern to be displayed. This layer is often tin oxide which has been baked (sintered) onto the glass.

[image: image35.wmf]seal and spacer

conducting film

liquid crystal material in sandwich

©IKES0809

connection to

backpane

connection to

conducting film

segments

The long axis of liquid crystal molecules align themselves normally to the surface of the glass. When a voltage is applied, it has the effect of turning the molecules through a right angle so that the dipole axes are brought into line with the electric field. At the same time free negative and positive ions are drawn to the appropriate oppositely charged conducting surfaces and, while passing through the liquid locally, neutralise the field across the liquid in the sandwich. This results in small groups of molecules becoming randomly disorientated in the rest of the sandwich, so producing what appears to be a 'milky' or 'ground glass' effect.

Such liquid crystal displays are adequate for devices such as calculators but are inadequate for graphics display applications because of their limited viewing angle and colour stability. These problems are overcome to a large extent by the Twisted Nematic (TN) cell and the Super Twisted Nematic (STN) cell.

In both TN and STN displays the thin layer of liquid crystal molecules is sandwiched between two transparent plates coated with a polymer. The polymer surface is rubbed before assembly with a velvet cloth to put fine lines onto the polymer. These lines ensure that the liquid crystal molecules all point in one direction in the plane of the liquid crystal layer, with their axes parallel to the polymer. The lines on the top and bottom polymer surfaces are arranged at 90° so that the liquid crystal molecules also twist through 90° through the thickness of the liquid crystal film. The liquid crystal and transparent plate assembly is then sandwiched between two polarising filters with their planes of polarisation aligned to the liquid crystal molecules. Light is therefore able to pass through the arrangement.

When an electric field is applied across the liquid crystal cell, the liquid crystal molecules rotate so that their axes are normal to the polymer surface. The plane of polarisation of the light is no longer rotated by 90° and so no light is transmitted by the cell.

[image: image36.wmf]on

off

voltage off

voltage on

natural incident light

upper polariser

lower polariser

light passes

BRIGHT

light blocked

by polariser

DARK

liquid crystal

©IKES0809

STN displays use a similar principle to the TN displays but use a larger angle of twist for the liquid crystals. The angle can be as large as 270o and results in a much improved contrast and viewing angle.

The largest market for LCDs is dot matrix module products integrating LCD glass and driver circuitry onto a single unit. STN colour graphics panels of up to 2000 x 1200 pixels are used in portable computers and LCD televisions. Thin film transistors are incorporated into the cell structure and colour is achieved by depositing red, green and blue filters onto the display front face in front of the pixels. Back lighting is provided by cold cathode fluorescent lamps (CCFLs) or LEDs.

Unlike other display technologies that respond to peak or average voltage and current, LCDs are sensitive to the rms voltage between the backplane and given segment location.

Any direct bias voltage across this junction would cause an irreversible electrochemical action that would shorten the life of the display. A typical LCD driving signal is shown below.

[image: image37.wmf]backplane

'off' segment -

drive in phase with backplane

'on' segment -

drive out of phase with backplane

0V

+V

s

0V

+V

s

0V

+V

s

©IKES0809

The backplane signal is simply a symmetrical square wave. The individual segment outputs are also square waves, either in phase with the backplane for an ‘off’ segment or out of phase for an ‘on’ segment. This causes a rms voltage of zero for an ‘off’ segment and a rms voltage of ‘Vs’ for an ‘on’ segment.

Single digit LCDs are not made – they are usually produced with three or more digits multiplexed together. As a result of ensuring that there is never a direct bias voltage across a LCD segment, it is much more complex to drive a multiplexed LCD than a LED display and it is usually done by dedicated ICs.

Some LCDs are stated as being 3½ or 4½ digit displays. The ‘half’ refers to the leading digit which can be a 0 or a 1, so giving a maximum display of 1999 for the 3½ digit display or
19999 for the 4½ digit display.

LED Dot Matrix Displays

The standard seven segment display is limiting in the way in which it is able to display numbers, characters and symbols. A popular alternative is the LED dot matrix display. This consists of 35 LEDs arranged in five columns and seven rows as shown in the diagram below.

[image: image38.wmf]©IKES0809

Dot matrix displays are available with the anodes of the LEDs connected to form the columns or the cathodes connected to form the columns. The diagram below shows the LEDs wired with the cathodes connected to the column lines and the anodes connected to the row lines. So to light an LED a column line must go to logic 0 and a row must go to logic 1.

[image: image39.wmf]R

R

R

R

R

R

R

C

C

C

C

C

©IKES0809

0

1

2

3

4

5

6

0

1

2

3

4

To produce characters on the display it is necessary to continuously set each of the column lines to logic 0 in turn while setting the appropriate row lines to logic 1. Consider creating the character, A, as shown below on the display diagram below.

[image: image40.wmf]©IKES0809

When C0 is at logic 0 and all of the other columns are at logic 1, rows R2, R3, R4, R5 and R6 must be at logic 1 with all of the other rows at logic 0. The display then looks as in the diagram below.

[image: image41.wmf]©IKES0809

C1 is then set to logic 0 with the other columns at logic 1 and rows R1 and R3 are set to logic 1 with the other rows set to logic 0. The display then looks as below.

[image: image42.wmf]©IKES0809

Column C2 is then set to logic 0 and rows R0 and R3 to logic 1. The display then becomes as below.

[image: image43.wmf]©IKES0809

Column C3 is then set to logic 0 and rows R1 and R3 to logic 1. The display then becomes as below.

[image: image44.wmf]©IKES0809

Column C4 is then set to logic 0 and rows R3, R4, R5 and R6 to logic 1. The display then becomes as below.

[image: image45.wmf]©IKES0809

If this process occurs rapidly enough then the eye perceives this as the character

[image: image46.wmf]©IKES0809

While this type of display offers considerable flexibility in the size and form of the characters displayed, it does suffer from two serious disadvantages.

The scanning process by which each column is activated in turn must be fast and continuous. This can take up significant processing time from the control system.

For a five column display, the LEDs are only lit for 20% of the display time and so they will only be at 20% of their normal brightness. This disadvantage can be reduced by passing significantly more current through the LEDs. This does not harm the LEDs so long as the mean current is within the normal operating parameters.

The circuit below shows how a LED dot matrix display can be operated from a microcontroller.

[image: image47.wmf]0V

R

©IKES0809

P

O

R

T

B

m

i

c

r

o

l

l

e

r

c

o

n

t

o

r

D

0

D

1

D

2

D

3

D

4

D

5

D

6

D

0

D

1

D

2

D

3

P

O

R

T

A

R

R

R

R

R

R

D

4

R

b

R

b

R

b

R

b

R

b

©IKES0809

R

0

R

1

R

2

R

3

R

4

R

5

R

6

C

0

C

1

C

2

C

3

C

4

All of the same considerations that were made for the multiplexed 7-segment displays apply to the multiplexed dot matrix display, including the resistor calculations.

So to display the character

[image: image48.wmf]©ikes1001

the following numbers must be sent to the interface:

	Column
	0
	1
	2
	3
	4

	PORTA
	0x7C
	0x0A
	0x09
	0x0A
	0x7C

	PORTB
	0x01
	0x02
	0x04
	0x08
	0x10

	
	
	
	
	
	

There should be a small pause between each set of column and row numbers being sent to the interface to enable the eye to register which LEDs are illuminated.

Assembler instructions that will display the character are given below.

// Set PORTA to be output

MOVW 0x00

// Move 0 into W

MOVWR TRISA
// Move the contents of W to TRISA

// Set PORTB so that D0 to D4 are outputs

MOVW 0x00

// Move 0x00 into W.

MOVWR TRISB
// Move the contents of W to TRISB

loop1:

// Label for the display loop

//Display the first column

MOVW 0x7C

// Move 0x7C into W

MOVWR PORTA
// Move the contents of W to PORTA

MOVW 0x01

// Move 1 into W

MOVWR PORTB
// Move the contents of W to PORTB

CALL delay

// Call a subroutine, delay which is elsewhere in memory and

// which gives a delay of 5ms

//Display the second column

MOVW 0x0A

// Move 0x0A into W

MOVWR PORTA
// Move the contents of W to PORTA

MOVW 0x02

// Move 2 into W

MOVWR PORTB
// Move the contents of W to PORTB

CALL delay

// Call a subroutine, delay which is elsewhere in memory and

// which gives a delay of 5ms

//Display the third column

MOVW 0x09

// Move 0x09 into W

MOVWR PORTA
// Move the contents of W to PORTA

MOVW 0x04

// Move 4 into W

MOVWR PORTB
// Move the contents of W to PORTB

CALL delay

// Call a subroutine, delay which is elsewhere in memory and

// which gives a delay of 5ms

//Display the fourth column

MOVW 0x0A

// Move 0x0A into W

MOVWR PORTA
// Move the contents of W to PORTA

MOVW 0x08

// Move 8 into W

MOVWR PORTB
// Move the contents of W to PORTB

CALL delay

// Call a subroutine, delay which is elsewhere in memory and

// which gives a delay of 5ms

//Display the fifth column

MOVW 0x7C

// Move 0x7C into W

MOVWR PORTA
// Move the contents of W to PORTA

MOVW 0x10

// Move 0x10 into W

MOVWR PORTB
// Move the contents of W to PORTB

CALL delay

// Call a subroutine, delay which is elsewhere in memory and

// which gives a delay of 5ms

JMP loop1

// Go to the beginning of the display program and start again.

This program would continue to show the letter A on the display until the power was turned off or the microcontroller reset.

Stepper Motor

Controlling the speed and position of a motor with a slotted disk or a shaft encoder is complex and can be inaccurate due to the overshoot and settling time of the motor. An alternative and superior device in low power applications is the stepper motor. Stepper motors are commonly used in all kinds of equipment where accurate positioning is essential, particularly computer controlled equipment e.g. printers, scanners, disk drives, robot arms etc. Their power output ranges from a few micro-watts when used to drive the hands of an analogue quartz watch up to about 1kW for industrial applications. Apart from the accurate positioning of the shaft, stepper motors also have the advantage that they hold the shaft firmly in place while they are stopped. However, they are inefficient in changing electrical power to mechanical power.

There are two main types of stepper motor, permanent magnet and variable reluctance. These two distinct types can also be combined into a hybrid motor which functions in a similar way to permanent magnet type but offers greater angular resolution. Without any power applied, permanent magnet motors tend to feel ‘lumpy’ as they are twisted by hand, while variable reluctance motors almost spin freely.
Stepper motors come in a wide range of angular resolution. The coarsest motors typically turn 90 degrees per step, while high resolution permanent magnet motors are commonly able to handle 1.8 or even 0.72 degrees per step. With an appropriate controller, most permanent magnet and hybrid motors can be run in half-steps, and some controllers can handle smaller fractional steps or microsteps.

Variable Reluctance Stepper Motor.

This type of stepper motor has been around for a long time. It is probably the easiest to understand from a structural point of view. This type of motor consists of a soft iron multi-toothed rotor and a wound stator. The diagram below shows a cross section of a typical variable reluctance stepper motor consisting of three coils and a 4 toothed rotor. When the stator windings are energized with direct current the poles become magnetized. Rotation occurs when the rotor teeth are attracted to the energised stator poles.

[image: image49.wmf]©IKES0809

1

1

2

2

3

3

coil 1

coil 2

coil 3

rotor

The diagram below shows the rotor turning 30° as the coils are energized in turn 1, 2, 3 and 1, giving a total rotation of 90°.

[image: image50.wmf]©IKES0809

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

This is an example of a unipolar motor, since the current only flows in one direction through the coils. To make the motor rotate in the other direction then the coils are energised in the opposite order, i.e. 3, 2, 1 and 3.

Permanent Magnet Stepper Motor

The permanent magnet stepper motor is a low cost and low resolution type motor with typical step angles of 1.8° to 30°. As the name implies, these motors have permanent magnets added to the motor structure. The rotor is magnetized with alternating north and south poles situated in a straight line parallel to the rotor shaft. These magnetized rotor poles provide an increased magnetic flux intensity and because of this the permanent magnet stepper motor exhibits improved torque characteristics when compared with the variable reluctance type.

The diagram below shows a unipolar permanent magnet stepper motor consisting of two coils which are centre tapped. Coil 1 is distributed between the top and bottom stator pole, while coil 2 is distributed between the left and right motor poles. The rotor is a permanent magnet with 6 poles, 3 south and 3 north, arranged around its circumference.

[image: image51.wmf]coil 1

coil 2

rotor

©IKES0809

1

1

2

2

N

S

S

N

N

S

a

b

a

b

S

N

1

2

As shown in the diagram, the current flowing from the centre tap of winding 1 to terminal a causes the top stator pole to be a south pole while the bottom stator pole is a north pole. This attracts the rotor into the position shown. If the power to winding 1 is removed and winding 2 is energised, the rotor will turn 30 degrees, or one step.

It is useful to verify that if two more sets of coils were added at an angle of 45° to the existing coils then the step angle would be reduced to 15°.

The diagram below shows the rotor turning 30° as the coils are energized in turn 1a, 2a, 1b and 2b, giving a rotation of 90°.

[image: image52.wmf]©IKES0809

1

1

2

2

N

S

S

N

N

S

S

N

1

1

2

2

1

1

2

2

S

N

1

1

2

2

S

N

S

N

N

N

S

S

N

S

S

N

N

N

S

S

S

N

N

N

S

S

This is another example of a unipolar motor, since the current only flows in one direction through the coils. To make the motor rotate in the other direction then the coils are energised in the opposite order, i.e. 2b, 1b, 2a and 1a.
Hybrid Stepper Motor

The hybrid stepper motor is more expensive than the permanent stepper motor but provides better performance with respect to step resolution, torque and speed. The typical step angles for the hybrid stepper motor range from 7.5° to 0.9°. The hybrid stepper motor combines the best features of both the permanent magnet and the variable reluctance type stepper motors. The rotor is multi-toothed like the variable reluctance motor and contains an axially magnetized concentric magnet around its shaft. The teeth on the rotor provide an even better path which helps guide the magnetic flux to preferred locations in the air gap. This further increases the holding and dynamic torque characteristics of the motor when compared with both the variable reluctance and permanent magnet types.

[image: image53.wmf]coil 1

coil 2

a

b

a

b

1

2

rotor

©IKES0809

1

1

2

2

N

N

N

N

N

N

S

S

S

In the simplified diagram above, the pole pieces of the coils each have two teeth at an angle of 30° to each other. The pole pieces for each part of each coil are off set from each other by 7.5°. The rotor consists of a magnetic cylinder with North poles on the top and South poles on the bottom, as shown above.
The diagrams below show how the rotor will rotate 7.5° as the coils are energized in turn giving a total rotation of 22.5°.

[image: image54.wmf]©IKES0809

S

N

S

N

S

N

2

S

N

The two most commonly used types of stepper motors are the permanent magnet and the hybrid types.

For both permanent magnet and variable reluctance stepping motors, if just one winding of the motor is energised, the rotor (under no load) will snap to a fixed angle and then hold that angle until the torque exceeds the holding torque of the motor, at which point, the rotor will turn, trying to hold at each successive equilibrium point.

Bipolar Motors

Bipolar permanent magnet and hybrid motors are constructed with exactly the same mechanism as is used on unipolar motors, but the two windings are wired more simply, with no centre taps. Thus, the motor itself is simpler but the drive circuitry needed to reverse the polarity of each pair of motor poles is more complex. The diagram below shows how such a motor is wired, while the motor cross section shown here is exactly the same as the cross section as the unipolar permanent magnet stepper motor.

[image: image55.wmf]coil 1

coil 2

rotor

©IKES0809

1

1

2

2

N

S

S

N

N

S

1a

1b

2a

2b

S

N

The drive circuitry for such a motor requires an H-bridge control circuit for each coil which allows the polarity of the power applied to each end of each winding to be controlled independently. The H-bridge circuit is fully described in the section on Interfacing.

To make the motor rotate, the coils have to be powered as in the table below.

	1a
	+
	
	–
	

	1b
	–
	
	+
	

	2a
	
	+
	
	–

	2b
	
	–
	
	+

This will make it rotate 90°, as shown in the diagram below.

[image: image56.wmf]©IKES0809

1

1

2

2

N

S

S

N

N

S

S

N

1

1

2

2

1

1

2

2

S

N

1

1

2

2

S

N

S

N

N

N

S

S

N

S

S

N

N

N

S

S

S

N

N

N

S

S

Controlling a Stepper Motor.

A stepper motor can readily be controlled by a microcontroller. However, the current needed to pass through the coils of the motor is much larger than the microcontroller PORT outputs can supply and so they need to be buffered. This can either be done using a dedicated driver IC e.g. the ULN2803A, which contains eight high current, open collector transistors, or by using discrete MOSFETs.

The circuit diagram below shows such an arrangement of MOSFETs controlling a unipolar stepper motor. Note the four protection diodes for the MOSFETs.

[image: image57.wmf]coil 1

a

b

0V

coil 2

a

b

©IKES0809

D

0

D

1

D

2

D

3

P

O

R

T

A

+12V

An assembler program to control the motor is shown below. In this program:-

bit 6 of PORTB determines the direction,

bit 7 of PORTB controls start/stop and

bits 0 to 3 determine the speed.

The stepper motor is controlled by bits 0 to 3 of PORTA

// Set PORTA to be output

MOVW 0x00

// Move 0 into W

MOVWR TRISA
// Move the contents of W to TRISA

// Set PORTB to be input

MOVW 0xFF

// Move 0xFF into W.

MOVWR TRISB
// Move the contents of W to TRISB

// Start or stop?

start:

// Label for the start of the control program

MOVRW PORTB
// Move the contents of PORTB to W

ANDW 0x80

// Mask all but bit 7

JPZ start

// If bit 7 is zero, ie stop, then check again

// Check direction of rotation

MOVRW PORTB
// Move the contents of PORTB to W

ANDW 0x40

// Mask all but bit 6

JPZ anticlockwise
// If bit 6 is zero then anticlockwise, if 1 clockwise.

clockwise:

// Label for the clockwise code

MOVW 0x01

// Move 1 into W

MOVWR PORTA
// Move the contents of W to PORTA

CALL delay

// Call the delay subroutine.

MOVW 0x02

// Move 2 into W

MOVWR PORTA
// Move the contents of W to PORTA

CALL delay

// Call the delay subroutine.

MOVW 0x04

// Move 4 into W

MOVWR PORTA
// Move the contents of W to PORTA

CALL delay

// Call the delay subroutine.

MOVW 0x08

// Move 8 into W

MOVWR PORTA
// Move the contents of W to PORTA

CALL delay

// Call the delay subroutine.

JMP start

// Go to the start of the program to check start/stop and direction

anticlockwise:

// Label for the anticlockwise code

MOVW 0x08

// Move 8 into W

MOVWR PORTA
// Move the contents of W to PORTA

CALL delay

// Call the delay subroutine.

MOVW 0x04

// Move 4 into W

MOVWR PORTA
// Move the contents of W to PORTA

CALL delay

// Call the delay subroutine.

MOVW 0x02

// Move 2 into W

MOVWR PORTA
// Move the contents of W to PORTA

CALL delay

// Call the delay subroutine.

MOVW 0x01

// Move 1 into W

MOVWR PORTA
// Move the contents of W to PORTA

CALL delay

// Call the delay subroutine.

JMP start

// Go to the start of the program to check start/stop and direction

delay:

// Label for the delay subroutine

MOVRW PORTB
// Move the contents of PORTB to W

ANDW 0x0F

// Mask bits 4 to 7

delay1:

// Label for the start of the delay loop

CALL delay2

// Subroutine call to another subroutine generating a delay

// of 2ms. The delay2 subroutine is elsewhere in the memory

// but not shown in this example.

SUBW 0x01

// Subtract 1 from W. This decrements the value that was set as

// the speed for the motor.

JPZ last

// If it is zero then jump to the end of the subroutine

JMP delay1

// Repeat the delay loop.

last:

// label for the end of the subroutine

RET

// Return from delay subroutine.
Comparison of Conventional and Stepper Motors

	
	Conventional
	Stepper

	Connections
	Usually two but there can be four if the field coils are separate to the rotor coils.
	Often four or six connections but there can be more depending on the number of field coils

	Speed
	Up to 30,000 rpm
	Up to a few hundred rpm

	Control
	Can be controlled by an on/off switch.
	Needs an electronic control circuit.

	Efficiency
	Can be as high as 90%
	Very low (10 – 40%) as most of the power is dissipated as heat.

	Starting torque
	Starts high and is reasonably constant over a wide range of speeds.
	Starts high but decreases with speed of rotation.

	Holding torque
	There is no stationary holding torque for most motors, since no power is supplied if the motor is stationary.
	Starts high but decreases with speed of rotation

	Power
	Up to several megawatts
	Up to several hundred watts.

	Accuracy of rotation
	No accuracy at all unless used with either a servo arrangement or a shaft encoder
	3 – 5% of a step on the overall angle turned through.

	
	
	

Interfacing Subsystems

Candidates should be able to:

· describe the use of tri-state buffers;

· describe the use of data latches;

· describe how data latches can be constructed from D-type flip-flops;

· recall the circuits for inverting Schmitt triggers and describe their operation;

· calculate the switching levels for inverting Schmitt triggers;

· explain how a Schmitt trigger can be used to regenerate a noisy input signal;

· describe the circuits needed to drive multiplexed displays (LCD and LED);

· recall the circuit for an H-bridge driver and describe its use and operation;
· describe the circuits needed to drive both conventional and stepper motors.
Tri-state Buffers.

A tri-state buffer has three possible output states, logic 0, logic 1 and a high impedance state.

For data to be read by a control system, it needs to be placed onto the data bus. With all of the other data signals flowing along the data bus it is essential that the data to be read is only placed onto the data bus at precisely the time that the processor wants to read the data.
A tri-state buffer is therefore needed to link the external data to the data bus. The high impedance state of a tri-state buffer is controlled by a pin labelled output enable, (OE).

A single bit tri-state buffer can be considered to be the circuit diagram below:

[image: image58.wmf]input

output

OE

0,1

0,1

0, switch closed

1, switch open

0, 1 or open circuit

buffer

©IKES0809

In many ICs this is active low, i.e. when the (OE) pin is logic 1, their outputs have a high impedance. When the (OE) pin is logic 0, the output is enabled to either logic 0 or 1. Many devices for use on computer buses have tri-state drivers built into them,
e.g. analogue to digital converters, (ADCs), memory devices etc.

A suitable circuit is shown in the diagram below.

[image: image59.wmf]R / W

data bus

OE

buffer

tri-state

external data

address

©IKES0809

For the processor to be able to access the external data, it must supply the correct address for the input port and also set the R/W control line to logic 1. These two signals, when NANDed together, make the , (OE), low, which connects the external data to the data bus via the tristate buffer.

There are several ICs which can be used for the tri-state buffer for this application including the 74HC241 and the 74HC244 devices, both of which are 8-bit devices.

Data Latches

For data to be written from a control system to an output port, the processor sets the address of the port, sets the R/W control line to logic 0 and then place the data onto the data bus. The data will only remain on the data bus for one cycle of the clock, which for a processor operating with a 330MHz bus will only be 3ns! Since external devices usually respond slowly, they are likely to miss the data! It is therefore normal for the output port to consist of a latch, into which the data can be stored and the external device can then access it when it is ready. Such a circuit is shown below.

[image: image60.wmf]R / W

data bus

EN

external data

address

latch

©IKES0809

For data to be written from a control system, the processor will set the address of the port and set the R/W control line to logic 0. This will make the output of the AND gate logic 1 which enables the latch. The processor then place the data onto the data bus and then sets the R/W control line to logic 1. This locks the data into the latch, ready for the external device to use when ready.

Page 20 of the ELEC2 Support Booklet describes how a 4-bit Data Latch can be made from D-type flip-flops. This can easily be extended to make an 8-bit latch by using another four D-type flip-flops.

Because of the speed which many processors now operate, it is necessary to use high speed D-type flip-flops to capture the data, e.g. 74HC74 devices. An 8-bit latch would use four 74HC74s. This would occupy much space on a circuit board and so it is usually preferable to use an IC which contains a complete 8-bit latch e.g. the 74HC373 device.

Schmitt Trigger Circuits

A Schmitt trigger circuit is a digital circuit that has a different ‘switch on’ voltage to
‘switch off’ voltage. This is known as Hysteresis and is shown in the diagram below.

[image: image61.wmf]V

out

V

in

0

–5V

+5V

+10V

–10V

©IKES0809

Consider the input voltage increasing from a value of -10V. As it does so, the output voltage remains at +10V until the input voltage reaches +5V. At this point, the output voltage very quickly becomes -10V and stays at -10V as the input voltage continues to increase.

Consider now the input voltage decreasing from a value of +10V. The output voltage will remain at -10V after the input voltage has decreased below +5V. It remains at -10V until the input voltage reaches-5V, at which point the output voltage rapidly increases to +10V and remains at that voltage as the input voltage continues to decrease. So the ‘switch on’ and ‘switch off’ voltages are different, depending on whether the input voltage is increasing or decreasing.
Schmitt trigger circuits are achieved by using positive feedback, i.e. a proportion of the output signal is 'fed-back' to the input with a phase shift of 0°, i.e. in phase with the input signal. This has the effect of increasing the input signal and so increasing the apparent gain of the whole circuit. All oscillator and astable circuits rely on positive feedback to make them unstable and oscillate. The NAND gate bistable latch uses positive feedback to force the change of state once it has been triggered.

Schmitt trigger circuits use positive feedback to increase their switching speed and define specific voltage levels at which switching will occur.

To visualise the effect of positive feedback in a Schmitt trigger circuit, consider a person standing on the edge of a tall cliff, contemplating jumping. Negative feedback would be applied by a second person catching hold of the first and pulling the person away from the edge of the cliff. Positive feedback would be applied if the second person, instead of pulling the first person to safety, gave the first person a push instead!

A Schmitt trigger circuit can be made from an op-amp. The circuit diagram of an inverting Schmitt trigger is shown in the diagram below.

[image: image62.wmf]0V

+

_

V

in

V

out

R

f

R

1

+V

s

–V

s

V

–

V

+

©IKES0809

0V

Consider the circuit diagram above with R1 = Rf = R, the open-loop gain = 106, the power supply voltages = + 10V and Vin initially at 0V. Owing to imperfections in the input circuits of the op-amp, when the circuit is first switched on there will be a small difference in voltage between the two input terminals of the op-amp. Assume that it is the positive input terminal of the op-amp that is slightly more positive. This difference will be amplified by the op-amp and will result in the output becoming positive. The voltage divider, consisting of the two resistors, Rf and R1, divides this voltage in half (since the two resistors in this example have the same value) and feed this back to the positive input terminal of the op-amp. This makes the positive input terminal now substantially more positive than the negative input terminal of the op-amp. This voltage difference is again amplified by the op-amp, making the output even more positive. This process repeats very rapidly until the op-amp output saturates at the positive supply voltage, i.e. 10V.

The voltage divider connected across the output will divide this voltage in half so making the positive input terminal of the op-amp = 5V.

Consider now what will happen as the input voltage, Vin, increases from 0V.

Until Vin approaches +5V, the positive input terminal of the op-amp will be greater than the negative terminal and so the op-amp output remains saturated at the positive supply voltage. With the figures given, the output of the op-amp will remain saturated as long as V+ > V– by more than 10V. Consider the situation when this voltage difference is only 9V, i.e. when Vin = 4.999991V. Vout will now be 9V SYMBOL 180 \f "Symbol" 106 = 9V. As a result of feedback, the positive input terminal of the op-amp will be at 4.5V, resulting in a difference in voltage between the input terminals of the op-amp of –0.4999991V. This difference, when multiplied by the open loop gain of the op-amp rapidly makes the op-amp saturate at the negative supply voltage,
 i.e. –10V. The voltage on the positive input terminal of the op-amp will now be -5V and
V+ < V– so keeping the output voltage saturated negatively.

This situation will continue until Vin decreases to -4.999990V, when the op-amp will stop being saturated negatively. Any further decrease in Vin (e.g. to -4.999991V) will result in the output voltage very rapidly rising and saturating at the positive supply voltage. This situation will remain stable until Vin again approaches +5V.

This is summarised in the diagram below, which shows a graph of Vout against Vin.

[image: image63.wmf]V

out

V

in

0

–5V

+5V

+10V

–10V

©IKES0809

As can be seen from the graph, the value of the output voltage depends on the path taken by the input voltage, and is different depending on whether the input voltage is increasing or decreasing. Such a circuit is said to show hysteresis.

There are several different Schmitt trigger circuits but they all have a similar arrangement. Two different arrangements are shown in the diagrams below.

[image: image64.wmf]0V

+

_

V

in

V

out

R

f

R

1

+V

s

–V

s

V

–

V

+

©IKES0809

0V

To calculate the switching voltages for the circuit above:-

(a)
Determine the maximum and minimum values of Vout.

For an ideal op-amp these can be assumed to be the same as the supply voltages.
(b)
Taking Vout as the maximum output voltage, apply the voltage divider formula to Rf
and R1 to determine the maximum voltage at the non-inverting input of the op-amp.

(c)
Since the circuit switches when V+ = V–, this will be the voltage for the upper
switching point.

(d)
Taking Vout as the minimum output voltage, apply the voltage divider formula to Rf
and R1 to determine the minimum voltage at the non-inverting input of the op-amp.

(e)
Since the circuit switches when V+ = V–, this will be the voltage for the lower
switching point.

Consider the example opposite.

Calculate the switching levels of the Schmitt trigger circuit.

(a)
Assume that the op-amp is ideal and the output switches between +12V.

(b)
The two resistors form a voltage divider in the ratio of 2:1. Therefore with a voltage across the two resistors together of 12V, there will be 4V across the 10kSYMBOL 87 \f "Symbol" resistor. (Or use the voltage divider formula).

(c)
Therefore the upper switching voltages will be +4V.

(d)
With Vout = -12V, the voltage across the
10kSYMBOL 87 \f "Symbol" resistor will be -4V.

(e)
Therefore the lower switching voltage will be -4V

2).
Calculate the switching voltage levels for the Schmitt trigger circuit below.

[image: image65.wmf]+

_

V

in

V

out

V

–

V

+

+12V

10k

W

10k

W

10k

W

R

0V

©IKES0809

At first sight this circuit seems to bear little relationship to the circuits so far seen.

(a)
Assume that the output voltage levels are +12V and 0V.

(b)
The Vin goes to the inverting input and so the circuit is an inverting Schmitt

trigger.

(c)
Consider the case when Vout is +12V. The feedback resistor, R, is effectively

in parallel with the top resistor of the voltage divider. The voltage divider then

effectively consists of a 5kSYMBOL 87 \f "Symbol" resistor at the top (two 10kSYMBOL 87 \f "Symbol" resistors in parallel)

and a 10kSYMBOL 87 \f "Symbol" at the bottom. V+, therefore has a voltage of 8V, which is the

upper switching level of the Schmitt trigger.

Consider the case when Vout is 0V. The feedback resistor, R, is now in

parallel with the bottom resistor of the voltage divider. The voltage divider

now effectively consists of a 5kSYMBOL 87 \f "Symbol" resistor at the bottom (two 10kSYMBOL 87 \f "Symbol" resistors in

parallel) and a 10kSYMBOL 87 \f "Symbol" at the top. V+, therefore has a voltage of 4V, which is

the lower switching level of the Schmitt trigger.

Signal Conditioning with Schmitt Triggers

The Schmitt trigger and the comparator both give saturated outputs for analogue input voltages. To understand why it is sometimes necessary to use a Schmitt trigger instead of a comparator, consider the switching action of a comparator. So long as the input voltage is different from the reference voltage by approximately 0.1mV or more, then the output of the op-amp is saturated. If it is less than this, the output may not saturate and any noise on the input signal may cause the output of the op-amp to rapidly switch many times as the input voltage goes past the reference voltage level. This cannot happen with a Schmitt trigger since there are two definite switching levels and once one is exceeded, the input voltage must change sufficiently to pass the other switching level for the output to change.

Schmitt triggers are often used to 'clean up' digital signals which have noise on them.

This is illustrated in the diagram below which shows a noisy input signal, the output from a comparator with Vref = 0V and the output from a Schmitt trigger with switching levels
at + 0.5V.

[image: image66.wmf]V

in

time

+V

s

–V

s

+0.5V

–0.5V

Comparator

+V

s

–V

s

Schmitt trigger

©IKES0809

From the graphs, it can be seen that the input voltage changes relatively slowly as it crosses the 0V axis. This will mean that as a result of noise on the input signal, the comparator will switch several times at each voltage crossing. This is shown by the multiple vertical lines for the comparator output. If the output from the comparator were connected to a digital counter, each of these rapid switching of the comparator would result in the digital counter counting, leading to incorrect results.

The Schmitt trigger does not suffer from this effect, each transition of the output being represented by a thin line, and so a digital counter would be able to count accurately.

H-Bridge Drives

The H-bridge driver circuit enables the current flow to be reversed through a device,
e.g. a motor, so enabling it to rotate in either direction.

A mechanical version of an H-bridge can be made with a Double Pole Double Throw (DPDT) switch as in the diagram below.

[image: image67.wmf]M

+V

s

–V

s

©IKES0809

When the switch is in the upper position the motor rotates in one direction.

When it is in the lower position, the motor rotates in the other direction.

The switch contacts should be ‘break before make’ to ensure that the power supply is not short circuited.

An electronic MOSFET version is shown below.

[image: image68.wmf]M

A

B

0V

+Vs

TR1

TR2

TR3

TR4

©IKES0809

While it might resemble the output of two push-pull amplifiers connected to the motor, it should be noted that in this circuit the drains are connected together in the centre and not the sources, ensuring that the MOSFETs function as switches and not source follower amplifiers.

Note also that TR1 and TR3 are both p-channel MOSFETs while TR2 and TR4 are n-channel MOSFETs. The four diodes provide protection for the MOSFETs from the large induced voltages produced by the motor.

To make side A of the motor positive and side B connected to 0V, TR1 and TR4 must conduct. So the gate of TR1 must be connected to 0V and the gate of TR4 must be connected to +Vs.

To make the motor rotate in the other direction, side A of the motor must be connected to 0V and side B must be positive. So TR2 and TR3 must conduct, i.e. the gate of TR2 must be connected to +Vs and the gate of TR3 connected to 0V.

Care must be taken when using this circuit that neither of the pairs TR1 and TR2 or TR3 and TR4 is conducting at the same time, or they will short circuit the power supply!

If TR1 and TR3 are both conducting but TR2 and TR4 are not, then the motor does not rotate.

Similarly if TR2 and TR4 are both conducting but TR1 and TR3 are not, the motor does not rotate.

While it is possible to drive the gates of the MOSFETs directly from the output port of a microcontroller, it is advisable to include a logic circuit to ensure that the MOSFETs cannot be switched on in such a way that the power supply is short circuited.

The truth table below shows how such a logic circuit can be devised.

In the truth table, STOP = 0, GO = 1. Clockwise = 0, Anticlockwise = 1

	Stop/Go
	Clock/Anti
	TR1 gate
	TR2 gate
	TR3 gate
	TR4 gate

	0
	0
	1
	0
	1
	0

	0
	1
	1
	0
	1
	0

	1
	0
	0
	0
	1
	1

	1
	1
	1
	1
	0
	0

From the truth table, it can be seen that the gate of TR3 is logically the inverse of the gate for TR2 and TR4 is logically the inverse of TR1.

The truth table for the gate of TR2 shows that an AND gate is needed.

A NAND gate can also be used for the gate of TR1 if the clock/anti line is inverted first.

A possible circuit diagram is shown below.

[image: image69.wmf]M

A

B

0V

+Vs

TR1

TR2

TR3

TR4

©IKES0809

clock/anti

stop/go

Bipolar Stepper Motors.

To control bipolar stepper motors it is necessary to be able to reverse the current passing through their coils. This requires the use of an H bridge circuit for each of the coils within the stepper motor. A stepper motor with two coils would therefore require two circuits similar to the one shown above, with each coil being connected in place of the conventional motor shown.

So to control the bipolar stepper motor shown on page 62, the control table would be changed

	1a
	+
	
	–
	
	
	1s/g = 1
	1s/g = 0
	1s/g = 1
	1s/g = 0

	1b
	–
	
	+
	
	
	1c/a = 1
	1c/a = X
	1c/a = 0
	1c/a = X

	2a
	
	+
	
	–
	
	2s/g = 0
	2s/g = 1
	2s/g = 0
	2s/g = 1

	2b
	
	–
	
	+
	
	2c/a = X
	2c/a = 1
	2c/a = X
	2c/a = 0

where s/g is the stop/go connection, c/a is the clockwise/anticlockwise connection,

1 refers to coil 1 and 2 refers to coil 2

Robotic Systems

Candidates should be able to:

· describe the essential components of robotic systems sensors, actuators and control architectures;

· describe the merits and suitability of different power sources;

· design control algorithms for a robotic system to achieve a given objective;

· describe the ability of such systems to sustain artificially intelligent behaviour through the use of artificial neural networks;

· discuss the applications of robotic systems;

· describe the social and economic impact of robotic systems;

· describe possible future developments of robotic systems.

Robots

The word robot was introduced to the public by Czech writer Karel Capek in his play R.U.R. (Rossum's Universal Robots), published in 1920. The play begins in a factory that makes artificial people called robots, but they are closer to the modern ideas of androids, creatures that can be mistaken for humans. They are able to think for themselves, but seem happy to serve humans.

The word robotics which is used to describe this field of study, was coined (albeit accidentally) by the science fiction writer Isaac Asimov in his work the “Foundation Series” and in his “Three laws of Robotics”

There is no one definition of robot which satisfies everyone, and many people have their own.

The Robotics Institute of America (RIA) defines a robot is a "re-programmable multi-functional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks".

The International Organization for Standardization gives a definition of robot in ISO 8373: "an automatically controlled, reprogrammable, multipurpose, manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications."

The range and types of robotic systems is continually developing and the table below shows some of the current types.

	Domestic
	Floor cleaning e.g. CleanMate

Lawn mower e.g. The Roomba, Robomow

	Industrial
	Welding, lifting, positioning etc e.g KUKA KR1000 titan

	Toys
	Roboraptor,

Lego Mindstorms NXT

	Medical
	da Vinci surgical system

	Science
	Mars Rovers, Spirit and Opportunity

	Military
	Bomb disposal, e.g tEODor

Reconnaissance, e.g. Asendro vehicle, Predator Drone remote aircraft

Battlefield drones e.g. EATR

Cruise Missiles, e.g Tomahawk

Defence

	
	

Robot System Sensors

As technology develops, robots are becoming more aware of their surroundings through sophisticated sensors and neural network programming.

Humans are limited to the five main senses sight, sound, taste, touch and smell, in order to be aware of their surroundings. Robots are not limited in this way and can be fitted with sensors which can respond to a variety of other stimuli, e.g. radioactivity, explosives, drugs, electric and magnetic fields etc They can also be fitted with GPS, so that they have an inherent knowledge of their location.

	Stimulus
	Range
	Detectors

	Mechanical vibrations
	Sound waves.

(20Hz – 20kHz)
	Two (or more microphones) which detect the sound and provide directional information.

	
	infrasound (<20Hz)
	Large condenser microphones and seismometers. Usually inappropriate for robotic systems to work with.

	
	ultrasound (>20kHz)
	Detectors are often based on piezoelectric crystals.

Uses range from leak detection of gases through to ultrasound imaging.

	Electromagnetic radiation.

This can be separated into:-
	Radio

	Standard detection of radio signals but at microwave frequencies multiple directional aerials can give a position of the radio wave source.

	
	Infrared

	This can range from simple detection using an infrared photodiode through to full infrared camera systems which can work on the inherent temperature of the surroundings to produce images which can be analysed.

	
	Visible

	This can range from simple detection using a visible photodiode through to full camera systems which can produce sufficient detail for quality control or guidance systems.

A two camera systems will provide 3D capability, so distances can be judged.

	
	Ultraviolet,

Ionising e.g. X rays
	These can be detected using photoelectric detectors, ionising chambers or germanium semiconductor detectors.

	Force
	Contact i.e. touch

	Microswitches (P26 of the Introductory Electronics support booklet.)

	
	Measurement
	Conductive polymers whose resistance changes when a pressure is applied.

Strain gauges – the resistance of thin wires change as they are stretched.

	
	Acceleration
	Accelerometers. These can now be made using nanotechnology so that there is 3-axis detection in a small surface mounted IC.

	Position
	GPS
	Global Positioning System. Can provide position data to an accuracy normally of
2 – 3 metres but using special processing techniques this can be improved by a factor of 10.

	
	Gyroscopes
	Used to detect changes in orientation.

Gyroscopes are used in the Hubble telescope to help maintain its position.

	Chemicals
	Smell

Taste
	‘Electronic nose’. There are many variants of this ranging from the ‘smell particles’ reacting with chemicals in the ‘electronic nose’ and changing the resistance of detectors through to nanotechnology gas chromatography systems.

	Obstacles
	Contact
	Micro-switches.

	
	Proximity
	IR reflective-optical switches.

	
	Distance
	Ultrasound radar system.

Microwave radar system.

Vision recognition system.

	Magnetic fields
	Varying
	Electromagnetic induction from a coil of wire.

Hall effect sensor

	
	Static
	Hall effect sensor

	Electric fields
	Static and varying
	Two (or more) air spaced plates which form a capacitor

Robot System Actuators

An actuator is anything that can cause movement and traditionally robotic systems have used either electro-mechanical, pneumatic or hydraulic devices. However, considerable research is now taking place into other systems including Electroactive Polymers, piezo-electric and chemical muscles. There are many new and exciting developments taking place in this field and it is suggested that students research this using the Internet.

	Type
	Actuator
	Description

	Electro-mechanical
	Conventional motor.
	Provides uncontrolled rotation in either direction.

Available in a range of powers from a few milliwatts through to Megawatts.

Can be operated by a standard transistor/MOSFET switch or H-bridge.

Can be controlled by incorporating into a feedback system using either a digital optical disc or an analogue servo arrangement.

Conventional motors are often used in pumps for hydraulic and pneumatic systems.

	
	Stepper motor
	Provides controlled rotation in either direction.

They are available in a range of powers from a few microwatts through to kilowatts.

They can be operated by a standard transistor/MOSFET switch or H-bridge.

Stepper motors do not need to be incorporated into a feedback loop for control as they rotate through definite angles when powered. However, some form of control feedback is advisable to ensure that there is no slippage due to excessive load on the rotor.

	
	Solenoid
	See page 40 of the Introductory Electronics Support Booklet.

These devices are either ON or OFF and so the armature is either in the coil or not.

They can be used for small movements between two fixed points and range in power ratings from a few milliwatts to tens of watts.

They can be operated by a standard transistor/MOSFET switch.

They are often used in hydraulic and pneumatic valves.

	Pneumatic
	Knowledge of actual devices is not required by this specification.
	These actuators are operated by compressed gases, usually air.

They are often used where high speed and large forces are required within a confined space.

While pneumatic systems can be used with pneumatic control systems, they are often controlled using conventional electronic systems involving motors, solenoids and optical sensors.

The power supply for pneumatic systems is usually an electric motor driven compressor, though for portable operation, a compressed air bottle can be used.

	Hydraulics
	Knowledge of actual devices is not required by this specification.
	These actuators are operated by compressed liquids (usually oils).

They are often used where very large forces and pressures are needed.

While hydraulic systems can be used with hydraulic control systems, they are often controlled using conventional electronic systems involving motors solenoids and optical sensors.

The power supply for pneumatic systems is usually an electric motor or diesel engine driven pump.

	Electrically activated smart materials.
	Electroactive polymers (EAPs)
	These have been the focus of much recent attention as the potential basis for such artificial muscle actuators. Some of these dielectric elastomer materials have produced strains in excess of 100% and high energy densities. Linear artificial muscle actuators for robots have been demonstrated on walking, flapping-wing and serpentine robotic devices.

They are controlled using traditional transistor/MOSFET switches, though often the voltages can be quite high (100V+).

The voltages are applied via thin conducting films to either side of the polymer.

	Piezoelectric materials.
	Ceramic and polymer.
	When an electric field is applied to a piezoelectric material, the shape of the material changes with the change in the applied voltage.

The high acceleration rates/short reaction times make piezoelectric elements suitable for the control of fast processes in valve technology, fuel injection application, mechanical shaking excitation for test purposes with time periods/rise- times in the microseconds range.

This characteristic of piezoelectric technology has been made useful with miniature robot technology.

They are controlled using traditional transistor/MOSFET switches, though often the voltages can be quite high (200V+).

The voltages are applied via thin conducting films to either side of the material.

	Chemical actuators
	Reciprocating Chemical Muscles (RCM)
	This takes advantage of the superior energy density of chemical reactions as opposed to that of electrical energy storage. For example, the energy potential in one drop of petrol is enormous compared to that which can be stored in a battery of the same volume and weight.

The RCM is a regenerative device that converts chemical energy into motion through a direct non-combustive chemical reaction. Hence, the concept of a "muscle" as opposed to an engine. There is no combustion nor is there an ignition system required.

An RCM is capable of producing autonomic motion as well as small amounts of electricity for control of the system.

Robot Control Architecture

The type of control system implemented within a robotic device depends on the scope of the tasks the robot is required to carry out.

Some robotic systems are little more than static machines carrying out a series of instructions and have limited sensors to be aware of the materials they are acting on. These include many of the fixed industrial robots. The control system for such machines is therefore basic, consisting of little more than a computer to issue the instructions and monitor the sensors.

The next range of robotic systems are those that are adaptive and so do not follow a specific set of instructions but rather are given a ‘task’ to complete and are ‘shown’ how to achieve the task. Such systems develop their own algorithms while being taught and then, by monitoring their own actions, are able to carry out the task and also modify the algorithms if the conditions change slightly (e.g. mechanical wear).

Such systems often incorporate aspects of Artificial Neural Networking but will contain some traditional instruction based computing to ensure accuracy of outcomes.

The most advanced range of robotic systems is usually mobile and, through their sensors, become ‘aware’ of themselves and their surroundings. Again these systems will be given tasks to achieve but only provided with limited guidance on how to achieve the outcome. For example, a military drone robotic aircraft will be told to fly at a specific height and to a specific place but it will have to determine how to achieve this taking account of the changes in wind direction and speed.

Such systems will invariably be controlled by an Artificial Neural Network, but will contain some traditional instruction based computing to ensure accuracy of outcomes.

Artificial Neural Networks (ANNs) are described in more detail later.

Power Sources for Robotic Systems.

All robotic systems need power. For a fixed robot, e.g. an industrial robot on a production line, the power can be obtained from the ‘mains’ electricity supply.

The issue of power sources becomes important for any mobile robotic system, since they have to either carry with them their energy supplies or obtain energy from their surroundings, or both.

	Type
	Device
	Description

	Electrical storage
	Capacitor
	Recent research has led to the development of a new type of capacitor known as Electrochemical Double Layer Capacitors (ECDLC) with capacitances as high as 5000F (5kF) and energy densities of up to 100kJ/kg.

A major advantage of capacitors is that they can be recharged significantly faster than batteries.

A disadvantage is that ECDLCs only operate at low voltages (2-5V).

	
	Lead-acid battery
	Conventional Lead-acid batteries have an energy density similar to that of ECDLCs (150kJ/kg) and suffer from the disadvantage that they take a long while to charge and a limit life. They have a cell voltage of 2.2V but are readily connected in series to provide a 13.2V supply.

	
	Nickel Metal Hydride battery
	These have replaced the Nickel Cadmium batteries over which they have several advantages:-

 - they contain no toxic poisonous materials like Cadmium,

 - they have a much higher energy density, 300kJ/kg, and

 - they do not have to be completely discharged before recharging.

The cell voltage is 1.2V but they are readily connected in series to provide 6 and 12V batteries.

	
	Lithium ion battery
	Lithium –ion batteries have a much higher energy density than other types of battery, 500kJ/kg and have a cell voltage of 3.6V. They are used extensively within consumer electronics which require high power consumption, e.g. Laptop computers, mobile phones, etc.

However, there have been some safety issues with these batteries resulting in laptop catching fire and exploding.

	
	Lithium polymer battery
	These batteries are a variant of the Lithium – ion batteries and were introduced to reduce the risk of fires and explosions. Cells also have a voltage of 3.6V but have an increased energy density of 1MJ/kg

	Fuel Cells
	Hydrogen Fuel Cell
	Unlike a battery which stores energy, a fuel cell relies on fuel being oxidised within an electrolyte in the cell to generate electricity. The fuel and oxidant are supplied externally and so the fuel cell can continuously produce electricity so long as there is a supply of reactants.

The terminal voltage of a fuel cell is 0.6 – 0.7V and they operate with an efficiency of around 50%. Hydrogen fuel cells have been around for many years and provided the electrical energy for the Apollo space missions.

When used within a fuel cell, Hydrogen has an energy density of approximately 1.5MJ/kg.

Hydrogen is difficult to transport and can be explosive when ignited with oxygen.

All fuel cells have the advantage that they are very reliable, since there are no moving parts to wear out.

	
	Methanol Fuel Cell
	These fuel cells are an emerging solution to overcome the problems of using Hydrogen as a fuel. The fuel does not have to be stored at very low temperatures and high pressures and the fuel cell is capable of having energy densities up to 15MJ/kg.

A current limitation is the low efficiency of the conversion process (15 – 25%) but this is likely to improve over the coming years.

These fuel cells are currently finding use in Laptop computers and mobile phones.

	Chemical
	e.g. Petrol
	To produce large amounts of power on demand and ease of use, there is currently little to beat a petrol engine.

Petrol has an energy density of around 40MJ/kg and even when used within an internal combustion engine operating at only 25% efficiency, it still gives a much higher energy output per kg than any of the previous mentioned systems.

However, fuel cell technology is continuing to improve and will get to a state where they can compete with burning hydrocarbon fuels systems.

Control Algorithms

The complexity of the programs and code needed to ensure that a robot can complete a given objective will depend upon the type of robot and the task. To make a fixed robot arm move something from one place to another in an isolated environment is fairly straightforward as there will be no need for the programmer to consider obstacles for the robot to avoid.

However, to get a mobile robot to move something from one place to another in an environment where there are obstacles will require a much more complex program.

Mobile robots will often be fitted with sensors with which to be aware of their surroundings which could range from simple switches through to stereo video cameras, as discussed on page 76. These sensors will either need to be regularly polled or connected to the Interrupt system of the microcontroller operating the robot in order to see if one has been activated and an obstacle detected.

As an example consider the following situation.

An obstacle is detected and the robot will need to be able to propel itself around it.

A standard method of achieving this would be to:-

Stop the motors moving the robot forward.

Reverse the motors so that the robot moves back a distance of roughly its length

Turn to the right.

Move forward (in the new direction) a distance of roughly the width of the robot

Turn 90° to the left and then continue forwards in the new direction.

If the robot encounters the obstacle again then it would repeat the process until it is able to move around the obstacle.

This algorithm would work well if the obstacle was small and isolated. It would be fairly easy to design obstacles where this algorithm would not work and something much more sophisticated would be needed and it is worth spending a few minutes considering different situations and how the robot could be programmed to avoid the obstacles.

For mobile robots that are operating remotely, it is not possible to incorporate algorithms for every conceivable situation and so it becomes important to devise algorithms that are more general and which provide opportunity for the robot to devise its own method of completing the objective. Such algorithms invariable incorporate elements of Artificial Neural Networks to provide very basic ‘Artificial Intelligence’.

A.I. and Neural Networks

Many tasks which seem simple for us, such as recognising an object or avoiding an obstacle, are difficult for even the most advanced computer. In an effort to increase a computer's ability to perform such tasks, programmers and electronic engineers began designing software and hardware to act more like the human brain, with its neurones and synaptic connections. The concept of Artificial Neural Networks (ANN) was originally developed in the 1950s, but was soon abandoned because the electronics technology of the time was unable to provide adequate support. As miniaturisation has developed, there has been a revival in Neural Computing from many disciplines; primarily neuroscience, engineering, and computer science, as well as from psychology, mathematics, physics, and linguistics. These sciences are all working toward the common goal of building Intelligent Systems.

Artificial Neural Networks are characterised by

•
Local processing in small processing elements (artificial neurones),

•
Massively parallel processing, implemented by a multitude of connection patterns
between the small processing elements,

•
The ability to acquire knowledge via learning from experience,

•
Knowledge storage in distributed memory, i.e. in the connections and patterns
between the processing elements.

Consider the example below of a very elementary processing element which is simply a comparator and which gives an output of 1 if the sum of its inputs is greater than or equal to 0.5.

[image: image70.wmf]input 1

(0, 1)

(0, 1)

input 2

output (0, 1)

processing

element

The element has two inputs, which can either be logic 0 or logic 1. Each input has a ‘weighting’ associated with it. Consider when the weighting of each input is 0.6, then if either of the inputs is a 1, the output will be a 1, giving an OR gate.

However, if the weighting of each input is set at 0.3, then the output will be a 1 only when both of the inputs are 1, so giving a AND gate. Obviously the weightings of each input can be different, so reflecting their importance.

Many ANNs are set up on standard computers with processing elements (neurones) being created by mathematical equations. These neurones are linked to others via weighted interconnections. A processing element takes weighted signals from these other neurones, possibly combines them, transforms them and outputs a numeric result. The weighting factors can then be adjusted on the basis of the output in order to ensure that the system learns.

However, since artificial neural networks are highly parallel systems, conventional computers are really unsuited for neural networks algorithms. Special purpose computational hardware is available to efficiently implement artificial neural networks.

One such piece of hardware is the IC known as pRAM-256, which is based on the Probabilistic RAM model. This IC has 256 six input pRAMs, with user-configurable interconnections. These chips can be connected together to produce systems with thousands of trainable 'silicon neurons'.

An advanced Neural Network system is able to run complex neural networks in real time and typically is capable of implementing 16K neurones with 32K interconnections per processor. The computational capability of such a system is 500 million connections per second!

Differences between an ANN and a PC.

Most modern computers are based on Von Neumann architecture and so are sequential by their very design. They use a small number of very complex processors (often one to four) and are multi-tasking / multi-threading (i.e. they can appear to do more than one task at a time). Neural computers, by comparison, use very large numbers of simple, non-linear processing elements or neurones. Each neurone is connected to every other neurone and converts one or more input signals to one or more output signals. The features which distinguish artificial neural networks from traditional Von Neumann computers are:

(a)
the elementary processors are highly non-linear (in the limit, they are simple

comparators),

(b)
the neurones are highly interconnected which allows a high degree of

parallel processing and

(c)
there is no idle memory containing data and programs, but rather each neurone

is pre-programmed and continuously active.

Even the simplest animal brain is a complex network of interlinking neurones and where two neurones link is called a Node. It is the interlinking that is the key to solving problems quickly, but it is a problem in electronic engineering: to create a 1 million-node network with 1 billion 'hardwired' interconnects would require several square metres of silicon wafers!

To carry out a task using a conventional computer, a program has to be written which will control the processor and store information at specific locations in memory. To carry out a task on an ANN, the ANN has to be trained, by giving it examples of inputs and outputs and letting it learn any relationships. These relationships are stored in the weightings of the connections (or synapses) of the inputs and outputs between the processing elements. Once trained, it can then be given new data to analyse and produce a result or prediction.

Types of ANNs.

There is a variety of ways in which ANNs can be classified but they are often classified by their method of learning (or training). Some ANNs employ supervised training while others are referred to as unsupervised or self-organising.

Supervised training is analogous to a student guided by an instructor. With unsupervised training, algorithms often perform clustering of the data into similar groups based on the information serving as inputs to the ANN.

This is analogous to a student who derives the lesson totally on his or her own.

The most widely used ANN is known as the Back Propagation ANN. This type of ANN is excellent at prediction and classification tasks. Another is the Kohonen or Self Organising Map which is excellent at finding relationships amongst complex sets of data.

Neural networks have their neurones structured in "layers". Each layer consists of neurones with similar characteristics and which execute their transfer functions in synchronisation (i.e. at the same time). Neural networks have neurones that accept data, an Input Layer, and neurones that produce outputs, an Output Layer.

Patterns are presented to the network via the input layer, which communicates to one or more hidden layers where the actual processing is done via a system of weighted 'connections'. The hidden layers then link to an 'output layer' where the answer is output. A very simple representation of this is shown in the diagram below.

[image: image71.wmf]Input layer

Hidden layer

Output layer

Inputs

Output

connections

©IKES0909

Most ANNs contain some form of 'learning rule' which modifies the weights of the connections according to the input patterns that it is presented with. I.e., ANNs learn by example as do their biological counterparts; a child learns to recognise birds from examples of birds.

Although there are many different kinds of learning rules used by neural networks, one of the most common is the Delta Rule. With the Delta Rule, 'learning' is a supervised process that occurs each time the network is presented with a new input data. When a neural network is initially presented with data it makes a random 'guess' as to what the output might be. It then sees how far its output was from a valid output and makes an appropriate adjustment to its connection weights. More graphically, the process for each neurone looks something like the diagram below, where Input(n) represents the nth input and Weight(n) represents the weighting associated with that input. Initially the weighting is random but is quickly refined by the Delta feedback function.

[image: image72.wmf]Input(n)

Output(n)

I(n) = Weight(n) x Input(n)

output

input

Weight(n) =Weight(n) + Error(n)

new

old

Neuron in Hidden Layer

©IKES0909

Note that the transfer function within the neurone is very non-linear and only gives a significant output when the input exceeds a threshold level. This helps to polarise the network's activity and helps to stabilise it. Backpropagation performs an error correction function aimed at producing an overall weighting for the neurones within the hidden layer that provides the lowest possible global error. In order to achieve this, neural networks often requires a large number of individual runs to determine the best solution. Most learning rules have built-in mathematical terms to assist in this process which control the 'speed' and the 'momentum' of the learning. The speed of learning is actually the rate of convergence between the current solution and the minimum global error. Momentum helps the network to overcome small irregularities and settle down at or near the minimum global error for the network.

Once a neural network is 'trained' to a satisfactory level it may be used on new data and situations. With robotic systems this will usually mean that it processes the inputs and carries out the task required. Sensors on the robot will provide it with some feedback of how well it completed the task so that it can continue to learn and refine its control for carrying out similar tasks.

It is also possible to over-train a neural network, which means that the network has been trained exactly to respond to only one type of input; which is much like rote memorisation. If this should happen then learning can no longer occur and the network is referred to as having been "grandmothered", and the only solution is to clear all of the training and start again.

Applications of Robotic Systems

Robotic systems can be applied to just about any task but are mainly used when:-

the task is too dangerous for humans to attempt e.g. -

bomb disposal,

work in nuclear reactors,

space exploration,

military attacks.

the task is too boring for humans to do e.g. -

assembly lines for cars

factory cleaning

the task is too complex for humans to do e.g. –

assembly of microelectronic circuit boards,

surgical procedures.

any task that can be accomplished cheaper using robots than humans.

Social and Economic Impact.

Robotic systems have had a significant social and economic impact particularly within the field of manufacturing. Where once car assembly lines would be staffed by teams of workers, they are now operated by robotic systems, so leading to significant reduction in jobs and employment. The reason for the move to robots on a production line is simple – money.

Robotic systems will work 24 hours a day, 7 days a week, 365 days of the year without comfort breaks, feeding or holidays. They do not need to be paid and are not entitled to any of the other requirements of human employees e.g. pensions, sick leave etc.

While this has had a drastic change on employment it has also had the effect of reducing the cost of manufacturing, particularly with electrical white goods, where very complex consumer electronic systems are now available at relatively low cost.

Robotic systems can often carry out tasks with greater accuracy and reliability than humans so increasing the reliability of products produced.

As robots have become more advanced and sophisticated, experts are increasingly exploring the questions of what ethics might govern robots' behaviour, and whether robots might be able to claim any kind of social, cultural, ethical or legal rights. One scientific team has said that it is possible that a robot brain will exist by 2050.

Vernor Vinge has suggested that a time may come when computers and robots are smarter than humans. He calls this "the Singularity" and suggests that it may be somewhat or possibly very dangerous for humans. This is discussed by a philosophy called Singularitarianism.

In 2009, experts attended a conference to discuss whether computers and robots might be able to acquire any autonomy, and how much these abilities might pose a threat or hazard. They noted that some robots have acquired various forms of semi-autonomy, including being able to find power sources on their own and being able to independently choose targets to attack with weapons. They also noted that some computer viruses can evade detection and destruction and have achieved "cockroach intelligence." They noted that self-awareness as depicted in science-fiction is probably unlikely, but that there were other potential hazards and pitfalls.

Some experts and academics have questioned the use of robots for military combat, especially when such robots are given some degree of autonomous functions. There are also concerns about technology which might allow some armed robots to be controlled mainly by other robots. The US Navy has funded a report which indicates that as military robots become more complex, there should be greater attention to implications of their ability to make autonomous decisions. Some public concerns about autonomous robots have received media attention, especially one robot, EATR, which can continually refuel itself using biomass and organic substances which it finds on battlefields or other local environments.

Some have suggested a need to build "Friendly AI", meaning that the advances which are already occurring with AI should also include an effort to make AI intrinsically friendly and humane. Several such measures reportedly already exist, with robot-heavy countries such as Japan and South Korea having begun to pass regulations requiring robots to be equipped with safety systems, and possibly sets of 'laws' akin to Asimov's Three Laws of Robotics.

Future Developments of Robotic Systems

The future is an uncertain place and it is difficult to predict. But to gain a possible insight it is worth considering what has occurred over the last few years and see how this could be transformed into the future.

The development of computer systems has continued to follow Moore’s Law and looks as if it will continue for the next few years at least. Intel are currently working on 45nm IC technology and believe that they will be able to move to 32nm IC technology within the next few years. This will mean a continued increase in the computing power and speed for robotic systems.

Sensor technology continues to improve with Siemens (and other manufacturers) working on producing ICs that can detect a wide variety of different chemicals, essentially the electronic equivalence of taste and smell for humans.

Vision technology is already at a high state of development and coupled with ANN processing enables robotic systems to identify and distinguish between objects, e.g. the Honda Asimo robot. As computer processing power increases so will a robots ‘vision’ system.

The developments in sensor technology will make robotic systems ever more aware of their surroundings and so can become more autonomous.

The other major area of development is portable power sources. The continued development of both energy storage systems (batteries and Ultra capacitors) and fuel cells (both methanol and hydrogen) will again help liberate robotic systems and so make them able to move more and also be more responsible for ensuring that their energy supplies are maintained.

The weaponized EATR military drone is already able to use waste biomass material from battlefields to sustain its energy. If this is a scary thought, the companies behind EATR, Cyclone Power and Robotic Technologies have put together a joint press release to comfort us all that the biomass-harvesting machine will be exclusively vegetarian, meaning it would only feed on "renewable plant matter" and not the bodies littering the battlefield. There's no reason not to believe them, though it is worth remembering that in the eyes of a robot, humans are renewable too!

APPENDIX A

[image: image73.wmf]1

5

10

15

20

25

1

5

10

15

20

25

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

©ikes1001

[image: image74.wmf]1

5

10

15

20

25

1

5

10

15

20

25

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

©ikes1001

APPENDIX B

[image: image75.wmf]©ikes1001

[image: image76.wmf]©ikes1001

�EMBED MSDraw * mergeformat���

�EMBED MSDraw * mergeformat���

�EMBED MSDraw * mergeformat���

�EMBED MSDraw * mergeformat���

�EMBED MSDraw * mergeformat���

�EMBED MSDraw * mergeformat���

�EMBED MSDraw * mergeformat���

�EMBED MSDraw * mergeformat���

�\EMBED MSDraw ���

63

_1312179279.bin

_1314252262.bin

_1314342411.bin

_1314467035.bin

_1314473330.bin

_1321887227.bin

_1328252248.bin

_1554188877.bin

_1314473331.bin

_1314468462.bin

_1314473241.bin

_1314473227.bin

_1314468148.bin

_1314467206.bin

_1314374222.bin

_1314464723.bin

_1314349584.bin

_1314258190.bin

_1314338849.bin

_1314339539.bin

_1314337173.bin

_1314256369.bin

_1314258145.bin

_1314252748.bin

_1314255461.bin

_1314252354.bin

_1314252548.bin

_1312449924.bin

_1312569455.bin

_1313734366.bin

_1313739111.bin

_1313739174.bin

_1313739013.bin

_1313734407.bin

_1312655042.bin

_1313522045.bin

_1312569893.bin

_1312532756.bin

_1312569286.bin

_1312531558.bin

_1312182078.bin

_1312443567.bin

_1312444411.bin

_1312182532

_1312179487.bin

_1312179506.bin

_1312179390.bin

_1311843381.bin

_1312096569.bin

_1312178397.bin

_1312179105.bin

_1312179202.bin

_1312178802.bin

_1312105052.bin

_1312177830.bin

_1312101244.bin

_1311930171.bin

_1311932502.bin

_1312013919.bin

_1312093168.bin

_1312009285.bin

_1311932313.bin

_1311920742.bin

_1311929710.bin

_1311920595.bin

_1310372210.bin

_1311839197.bin

_1311841510.bin

_1311841944.bin

_1311841190.bin

_1311499495.bin

_1311585952.bin

_1310456656.bin

_1310457954.bin

_1310715120.bin

_1310373881.bin

_1310369744.bin

_1310370457.bin

_1310371860.bin

_1310370112.bin

_1310369395.bin

_1310369646.bin

_1310367503.bin

