Improved 'Low Head' Regulator.

Specification

Provides a 5V and 10V stabilised power supply from a 12 - 15V supply Provides a current of $\approx 0.5A$ at 5V and $\approx 0.2A$ at 10V The 10V supply can be readily adjusted to other voltages (e.g. 9V).

Circuit diagram

How it works

The 7805 regulator provides a stable 5V supply and is used as a reference voltage for the comparator formed from the TLC271 op-amp. The other input to the comparator comes from a voltage divider connected across the '10V' output formed from two 1k Ω resistors. The output voltage from this divider circuit is compared with the 5V from the 7805 by the op-amp. If the potential divider output is greater than +5V, then the output of the op-amp increases, so making the IRF9630 conduct less, thus maintaining the output voltage at 10V. If the output from the potential divider is less +5V, then the output from the op-amp decreases so making the p-channel MOSFET conduct more, again maintaining the output voltage at 10V.

Notes

- This circuit is best suited when there is only a small voltage difference (1 5V) between the input and output. If the voltage difference is greater than \approx 4V then the normal emitter follower transistor regulator is better suited as there may be less power wasted.
- The IRF9630 and 7805 should be mounted on heatsinks.
- Any other p-channel MOSFET should be suitable for use in this circuit e.g. IRF9530 etc
- The TLC271 bias is set high by connecting pin 8 to 0V.
- The voltage gain loop of the op-amp and the IRF9630 is very high and the circuit can oscillate at a low frequency if a large value capacitor is not placed across the output. The 2200µF capacitors were only used because they were available. (Capacitors ≥ 470µF should be sufficient)
- BiFET op-amps are not suitable for this circuit since there is a tendency for the output to latch high or low if their inputs are near to the supply line voltages at any time.
- The 7805 could be replaced with a 5V zener diode and series resistor or 78L05 if there is only a small current requirement from the 5V supply.

Construction

The circuit is not fussy in the method of construction and has been built on both prototype board and strip board.

A picture of the stripboard version is shown below.

